| 1 | 苏建华, 薛栋娥, 刘传凯, 等.  HOG内嵌模板匹配的车门夹人检测算法[J]. 北京交通大学学报, 2019, 43 (2): 64- 71. doi: 10.11860/j.issn.1673-0291.20180079
 | 
																													
																						|  | SU J H ,  XUE D E ,  LIU C K , et al.  An algorithm for detecting train door persons based on HOG inline template matching[J]. Journal of Beijing Jiaotong University, 2019, 43 (2): 64- 71. doi: 10.11860/j.issn.1673-0291.20180079
 | 
																													
																						| 2 | 郭小兵. 基于贝叶斯网络的目标综合识别方法研究[D]. 长沙: 国防科技大学, 2004. | 
																													
																						|  | GUO X B. A research on the algorithms of target identification fusion with Bayesian networks[D]. Changsha: National University of Defense Technology, 2004. | 
																													
																						| 3 | 黄洁, 张海.  利用支持向量机的飞机目标检测[J]. 电光与控制, 2008, 15 (9): 6- 9. doi: 10.3969/j.issn.1671-637X.2008.09.002
 | 
																													
																						|  | HUANG J ,  ZHANG H .  Plane detection based on support vector machine and information fusion[J]. Electronics Optics and Control, 2008, 15 (9): 6- 9. doi: 10.3969/j.issn.1671-637X.2008.09.002
 | 
																													
																						| 4 | HE K M ,  ZHANG X Y ,  REN S Q , et al.  Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916. doi: 10.1109/TPAMI.2015.2389824
 | 
																													
																						| 5 | GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448. | 
																													
																						| 6 | REN S ,  HE K ,  GIRSHICK R , et al.  Faster R-CNN: towards realtime object detection with region proposal network[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149. doi: 10.1109/TPAMI.2016.2577031
 | 
																													
																						| 7 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once unified real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. | 
																													
																						| 8 | REDMON J, FARHADI A. YOLO 9000 better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525. | 
																													
																						| 9 | REDMON J, FARHADI A. YOLO v3 an incremental improvement[EB/OL]. [2018-04-08]. https//arxiv.org/abs/1804.02767. | 
																													
																						| 10 | LIU W, ANGUELOY D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. | 
																													
																						| 11 | 李晓光, 付陈平, 李晓莉, 等.  面向多尺度目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2019, 31 (7): 1195- 1101. | 
																													
																						|  | LI X G ,  FU C P ,  LI X L , et al.  Improved Faster R-CNN for multi-scale object detection[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (7): 1195- 1101. | 
																													
																						| 12 | 孙皓泽, 常天庆, 王全东, 等.  一种基于分层多尺度卷积特征提取的坦克装甲目标图像检测方法[J]. 兵工学报, 2017, 38 (9): 1681- 1691. doi: 10.3969/j.issn.1000-1093.2017.09.003
 | 
																													
																						|  | SUN H Z ,  CHANG T Q ,  WANG Q D , et al.  Image detection method for tank and armored targets based on hierarchical multi-scale convolution feature extraction[J]. Acta Armamentarii, 2017, 38 (9): 1681- 1691. doi: 10.3969/j.issn.1000-1093.2017.09.003
 | 
																													
																						| 13 | 黄凤荣, 李杨, 郭兰申, 等.  基于Faster R-CNN的零件表面缺陷检测方法[J]. 计算机辅助设计与图形学学报, 2020, 32 (6): 883- 893. | 
																													
																						|  | HUANG F R ,  LI Y ,  GUO L S , et al.  Method for detection surface defects of engine parts based on faster R-CNN[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (6): 883- 893. | 
																													
																						| 14 | 曹旭, 邹焕新, 成飞, 等.  基于RHTC网络的飞机目标检测与精细识别[J]. 系统工程与电子技术, 2021, 43 (12): 3439- 3451. | 
																													
																						|  | CAO X ,  ZOU H X ,  CHENG F , et al.  Aircraft target detection and fine-grained recognition based on RHTC network[J]. Systems Engineering and Electronics, 2021, 43 (12): 3439- 3451. | 
																													
																						| 15 | 孙嘉赤, 邹焕新, 邓志鹏, 等.  基于级联卷积神经网络的港口多方向舰船检测与分类[J]. 系统工程与电子技术, 2020, 42 (9): 1903- 1910. | 
																													
																						|  | SUN J C ,  ZOU H X ,  DENG Z P , et al.  Oriented inshore ship detection and classification based on cascade RCNN[J]. Systems Engineering and Electronics, 2020, 42 (9): 1903- 1910. | 
																													
																						| 16 | LI Y ,  FU K ,  SUN H , et al.  An aircraft detection framework based on reinforcement learning and convolutional neural networks inremote sensing images[J]. Remote Sensing, 2018, 10 (2): 243. doi: 10.3390/rs10020243
 | 
																													
																						| 17 | CAI Z W ,  VASCONCELOS N .  Cascade R-CNN: high quality target detection and instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1483- 1498. doi: 10.1109/TPAMI.2019.2956516
 | 
																													
																						| 18 | NAJIBI M, RASTEGARI M, DAVIS L S. G-CNN: an iterative grid based object detector[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2369-2377. | 
																													
																						| 19 | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769. | 
																													
																						| 20 | 朱兴动, 田少兵, 黄葵, 等.  基于深度卷积神经网络的舰载机目标检测[J]. 计算机应用, 2020, 40 (5): 1529- 1533. | 
																													
																						|  | ZHU X D ,  TIAN S B ,  HUANG K , et al.  Target detection of carrier-based aircraft based on deep convolutional neural network[J]. Journal of Computer Applications, 2020, 40 (5): 1529- 1533. | 
																													
																						| 21 | YANG F, CHOI W, LIN Y Q. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifers[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2129-2137. | 
																													
																						| 22 | KONG T, YAO A B, CHEN Y R. HyperNet: towards accurate region proposal generation and joint object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 845-853. | 
																													
																						| 23 | CAO C Q ,  WANG B .  An improved faster R-CNN for small object detection[J]. IEEE Access, 2019, 7, 106838- 106846. doi: 10.1109/ACCESS.2019.2932731
 | 
																													
																						| 24 | GIRSHICK R .  Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158. | 
																													
																						| 25 | REN S Q ,  HE K M ,  GIRSHICK R , et al.  Faster R-CNN: towards realtime object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149. doi: 10.1109/TPAMI.2016.2577031
 | 
																													
																						| 26 | DAI J F, LI Y, HE K M. R-FCN: object detection via region-based fully convolutional networks[C]//Proc. of the Advances in Neural Information Processing Systems, 2016: 379-387. | 
																													
																						| 27 | 周龙, 韦素媛.  基于深度学习的复杂背景雷达图像多目标检测[J]. 系统工程与电子技术, 2019, 41 (6): 1258- 1264. | 
																													
																						|  | ZHOU L ,  WEI S Y .  Multi-objective detection of complex background radar image based on deep learning[J]. Systems Engineering and Electronics, 2019, 41 (6): 1258- 1264. | 
																													
																						| 28 | 王全东, 常天庆.  基于深度学习算法的坦克装甲目标自动检测与跟踪系统[J]. 系统工程与电子技术, 2018, 40 (9): 2143- 2156. | 
																													
																						|  | WANG Q D ,  CHANG T Q .  Automatic detection and tracking system of tank armored targets based on deep learning algorithm[J]. Systems Engineering and Electronics, 2018, 40 (9): 2143- 2156. | 
																													
																						| 29 | 李广帅, 苏娟, 李义红.  基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47 (1): 159- 168. | 
																													
																						|  | LI G S ,  SU J ,  LI Y H .  An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (1): 159- 168. | 
																													
																						| 30 | 张玉燕, 李永保.  基于Faster R-卷积神经网络的金属点阵结构缺陷识别方法[J]. 兵工学报, 2019, 40 (11): 2329- 2335. doi: 10.3969/j.issn.1000-1093.2019.11.018
 | 
																													
																						|  | ZHANG Y Y ,  LI Y B .  Internal detection of metal three-dimensional multi-layer lattice structure based on Faster R-CNN[J]. Acta Armamentarii, 2019, 40 (11): 2329- 2335. doi: 10.3969/j.issn.1000-1093.2019.11.018
 |