1 |
罗鹏飞, 张文明, 刘忠, 等. 统计信号处理基础——估计与检测理论[M]. 北京: 电子工业出版社, 2011, 501
|
|
LUO P F , ZHANG W M , LIU Z , et al. Fundamentals of statistical signal processing[M]. Beijing: Publishing House of Electronics Industry, 2011.
|
2 |
BASSEM R M . Radar signal analysis and processing using Matlab[M]. New York: Chapman and Hall CRC, 2010: 290- 292.
|
3 |
ZUO L , WANG J , WANG J P , et al. UAV detection via long-time coherent integration for passive bistatic radar[J]. Digital Signal Processing, 2021, 112, 102997.
doi: 10.1016/j.dsp.2021.102997
|
4 |
CHEN X L , GUAN J , CHEN W S , et al. Sparse long-time cohe-rent integration-based detection method for radar low-observable maneuvering target[J]. IET Radar, Sonar and Navigation, 2020, 14 (4): 538- 546.
doi: 10.1049/iet-rsn.2019.0313
|
5 |
LI X L , CUI G L , YI W , et al. Coherent integration for maneuvering target detection based on radon-Lv's distribution[J]. IEEE Signal Processing Letter, 2015, 22 (9): 1467- 1471.
doi: 10.1109/LSP.2015.2390777
|
6 |
MARKA R, 邢孟道, 王彤, 等. 雷达信号处理基础[M]. 2版 北京: 电子工业出版社, 2017.
|
|
MARK A R , XING M D , WANG T , et al. Fundamentals of radar signal processing[M]. 2nd ed Beijing: Publishing House of Electronics Industry, 2017.
|
7 |
ZHAO Y C , SU Y . Vehicles detection in complex urban scenes using Gaussian mixture model with FMCW radar[J]. IEEE Sensors Journal, 2017, 17 (18): 5948- 5953.
doi: 10.1109/JSEN.2017.2733223
|
8 |
YANG G , LI H C , YANG W , et al. Unsupervised change detection of SAR images based on variational multivariate Gaussian mixture model and Shannon entropy[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (5): 826- 830.
doi: 10.1109/LGRS.2018.2879969
|
9 |
LIANG X , SHUI P L , SU H T . Bi-phase compound-Gaussian mixture model of sea clutter and scene-segmentation-based target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4661- 4674.
doi: 10.1109/JSTARS.2021.3074172
|
10 |
SEABRA J C , FRANCESCO C , ORIOL P , et al. Rayleigh mixture model for plaque characterization in intravascular ultrasound[J]. IEEE Trans.on Biomedical Engineering, 2011, 58 (5): 1314- 1324.
doi: 10.1109/TBME.2011.2106498
|
11 |
NAR F , OKMAN O E , OZGUR A , et al. Fast target detection in radar images using Rayleigh mixture and summed area tables[J]. Digital Signal Processing, 2018, 77, 86- 101.
doi: 10.1016/j.dsp.2017.09.015
|
12 |
AKYILMAZ E . Multilogit prior-based Gamma mixture model for segmentation of SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (5): 741- 745.
doi: 10.1109/LGRS.2018.2880819
|
13 |
LI T , LIU Z , XIE R , et al. Ship detection for polarimetric SAR images based on Gp mixture model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (6): 1812- 1824.
doi: 10.1109/JSTARS.2019.2912895
|
14 |
FERNANDEZ-MICHELLI J I , HURTADO M , ARETA J A , et al. Unsupervised polarimetric SAR image classification using Gp mixture model[J]. IEEE Geoscience Remote Sensing Letter, 2017, 14 (5): 754- 758.
doi: 10.1109/LGRS.2017.2679103
|
15 |
KHAN S , GUIDA R . On single-look multivariate G distribution for PoISAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5 (4): 1149- 1163.
doi: 10.1109/JSTARS.2012.2202557
|
16 |
LIU W J , LIU J , HAO C P , et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China: Information Sciences,
doi: 10.1007/s11432-020-3211-8
|
17 |
LIU J , HAN J , ZHANG Z J , et al. Bayesian detection for MIMO radar in Gaussian clutter[J]. IEEE Trans.on Signal Processing, 2018, 66 (24): 6549- 6559.
doi: 10.1109/TSP.2018.2879038
|
18 |
BESSON O . Adaptive detection using randomly reduced dimension generalized likelihood ratio test[J]. Signal Processing, 2020, 166, 107265.
doi: 10.1016/j.sigpro.2019.107265
|
19 |
田晓. 雷达有源欺骗干扰综合感知方法研究[D]. 成都: 电子科技大学, 2013.
|
|
TIAN X. Study on the methods of radar active deception jamming integrated sensing[D]. Chengdu: University of Electronic Science and Technology of China, 2013.
|
20 |
FANG Z , LI H T , QIAN Y M . Cognitive anti-jamming receiver under phase noise in high frequency bands[J]. Journal of Systems Engineering and Electronics, 2018, 29 (1): 31- 38.
doi: 10.21629/JSEE.2018.01.03
|
21 |
TIAN C , PEI Y , HOU P . Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming[J]. Journal of Systems Engineering and Electronics, 2020, 31 (5): 859- 870.
doi: 10.23919/JSEE.2020.000066
|
22 |
PHILIPPE S . Belief functions on real numbers[J]. International Journal of Approximate Reasoning, 2005, 40 (3): 181- 223.
doi: 10.1016/j.ijar.2005.04.001
|
23 |
CAI Q X , GAO X Z , DENG Y . Pignistic belief transform: a new method of conflict measurement[J]. IEEE Access, 2020, 8, 15265- 15272.
doi: 10.1109/ACCESS.2020.2966821
|
24 |
LIU B , HUANG Q , ZHAO J B , et al. A novel belief function based framework for UOPF with multiprobability-characterized and knowledge deficient power sources[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (5): 3153- 3164.
doi: 10.1109/TII.2020.3006222
|
25 |
FRANCOIS C , BRANKO R , EMMANUEL D , et al. Least committed basic belief density induced by a multivariate Gaussian: formulation with applications[J]. International Journal of Approximate Reasoning, 2008, 48 (2): 419- 436.
doi: 10.1016/j.ijar.2006.10.003
|
26 |
FICHE A , CEXUS J C , ARNAUD M , et al. Features modeling with an alpha-stable distribution: application to pattern recog-nition based on continuous belief functions[J]. Information Fusion, 2013, 14 (4): 504- 520.
doi: 10.1016/j.inffus.2013.02.004
|
27 |
PHAN H G . Decision with dempster-shafer belief functions: decision under ignorance and sequential consitency[J]. International Journal of Approximate Reasoning, 2012, 53 (1): 38- 53.
doi: 10.1016/j.ijar.2011.09.004
|