系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (1): 156-162.doi: 10.3969/j.issn.1001-506X.2021.01.19
顾凌枫1(), 何明1(), 陈国友1(), 季敏惠2(), 刘锦涛1()
收稿日期:
2020-02-22
出版日期:
2020-12-25
发布日期:
2020-12-30
作者简介:
顾凌枫(1991-),男,硕士研究生,主要研究方向为无人机指控。E-mail:基金资助:
Lingfeng GU1(), Ming HE1(), Guoyou CHEN1(), Minhui JI2(), Jintao LIU1()
Received:
2020-02-22
Online:
2020-12-25
Published:
2020-12-30
摘要:
为提升无人机集群(unmanned aerial vehicle swarm, UAVS)应对恶劣天气、人为干扰、组件故障等扰动的能力,借鉴复杂网络弹性理念,对UAVS扰动场景进行建模,提出了UAVS弹性的概念与内涵,通过与鲁棒性、可靠性、抗毁性等指标对比,阐述了弹性指标对于研究UAVS系统特性的意义;分析UAVS性能变化曲线和选取指标,刻画了弹性定量指标,从而提出了UAVS系统弹性评估方法;从吸收扰动和恢复两方面,提出了UAVS系统弹性的优化策略。最后,展望UAVS系统弹性未来研究的发展趋势。
中图分类号:
顾凌枫, 何明, 陈国友, 季敏惠, 刘锦涛. 无人机集群系统弹性研究[J]. 系统工程与电子技术, 2021, 43(1): 156-162.
Lingfeng GU, Ming HE, Guoyou CHEN, Minhui JI, Jintao LIU. Research on unmanned aerial vehicle swarm system resilience[J]. Systems Engineering and Electronics, 2021, 43(1): 156-162.
1 | 梁晓龙, 张桂强, 吕娜. 无人机集群[M]. 西安: 西北工业大学出版社, 2018. |
LIANG X L , ZHANG G Q , LYU N . UAV Swarms[M]. Xi'an: Northwestern Polytechnic University Press, 2018. | |
2 | 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J]. 中国科学:信息科学, 2019, 49 (1): 112- 118. |
DUAN H B , ZHANG D F , FAN Y M , et al. From wolf pack intelligence to UAV swarm cooperative decision-making[J]. SCIENTIA SINICA Informationis, 2019, 49 (1): 112- 118. | |
3 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41 (S1): 723738. |
JIA Y N , TIAN S Y , LI Q . The development of unmanned aerial vehicle swarms[J]. Acta Aeronautica ET Astronautica Sinica, 2020, 41 (S1): 723738. | |
4 | GU J J , SU T , WANG Q H , et al. Multiple moving targets surveillance based on a cooperative network for multi-UAV[J]. IEEE Communications Magazine, 2018, 56 (4): 82- 89. |
5 | SUN Y P, WANG Z J, SU H S, et al.A brief overview of flocking control for multi-agent systems[C]//Proc.of the 11th International Conference on Intelligent Robotics and Applications, 2018: 48-58. |
6 | OH K K , PARK M C , AHN H S . A survey of multi-agent formation control[J]. Automatica, 2015, 53, 424- 440. |
7 | PENG R . Joint routing and aborting optimization of cooperative unmanned aerial vehicles[J]. Reliability Engineering and System Safety, 2018, 177, 131- 137. |
8 | CEKMEZ U, OZSIGINAN M, SAHINGOZ O K. Multi-UAV path planning with multi colony ant optimization[C]//Proc.of the 17th International Conference on Intelligent Systems Design and Applications, 2017: 407-417. |
9 | BERNARDINI S , FOX M , LONG D . Combining temporal planning with probabilistic reasoning for autonomous surveillance missions[J]. Autonomous Robots, 2015, 41 (1): 181- 203. |
10 | SAMPEDRO C, BAVLE H, SANCHEZ J L, et al. A flexible and dynamic mission planning architecture for UAV swarm coordination[C]//Proc.of the International Conference on Unmanned Aircraft Systems, 2016: 355-363. |
11 | LIU J J , WANG W P , LI X B , et al. Solving a multi-objective mission planning problem for UAV swarms with an improved NSGA-Ⅲ algorithm[J]. International Journal of Computational Intelligence Systems, 2018, 11 (1): 1067- 1081. |
12 | 刘献伟, 陈虎林, 李飞, 等. 一网打尽——无人集群时代的新攻防[J]. 航空兵器, 2019, 26 (1): 70- 75. |
LIU X W , CHEN H L , LI F , et al. Catch all in nets: new attack and defense in the age of unmanned cluster[J]. Aero Weaponry, 2019, 26 (1): 70- 75. | |
13 | 王强.面向任务的多智能体系统抗毁性拓扑结构构建与群集控制[D].北京:北京理工大学, 2014. |
WANG Q. Task-oriented fault-tolerant topology and flocking control for multi-agent systems[D]. Beijing: Beijing Institute of Technology, 2014. | |
14 | WANG X H , ZHANG Y , WANG L G , et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory[J]. Chinese Journal of Aeronaut, 2020, 33 (1): 352- 364. |
15 | PETRITOLI E, LECCSE F, CIANI L. Reliability assessment of UAV systems[C]//Proc.of the IEEE International Workshop on Metrology for AeroSpace, 2017: 266-270. |
16 | CUI X Y, WANG S P, SHI S A, et al. A delay-based reliability assessment for multiUAV with time-varying topologies[C]//Proc.of the International Conference on Aircraft Utility Systems, 2018. |
17 | BAI G H , LI Y J , FANG Y N , et al. Network approach for resilience evaluation of a UAV swarm by considering communication limits[J]. Reliability Engineering and System Safety, 2020, 193, 106602. |
18 | CHENG C C , BAI G H , ZHANG Y A , et al. Resilience evaluation for UAV swarm performing joint reconnaissance mission[J]. Chaos, 2019, 29 (5): 053132. |
19 | WANG L , LU D , ZHANG Y , et al. A complex network theory-based modeling framework for unmanned aerial vehicle swarms[J]. Sensors, 2018, 18 (10): 3434. |
20 | 何明,马子玉,刘锦涛,等.基于影响度介数中心性的多智能体牵制控制算法[J].控制与决策,已录用. |
HE M, MA Z Y, LIU J T, et al. Multi-agent pinning control algorithm based on betweenness centrality with influence degree[J]. Control and Decision, accepted. | |
21 | 陈旿, 范铭楷, 李泽宏, 等. 蜂群无人机系统的网络鲁棒性设计[J]. 系统工程与电子技术, 2019, 41 (11): 2633- 2640. |
CHEN W , FAN M K , LI Z H , et al. Design of network robustness for drone swarm system[J]. Systems Engineering and Electronics, 2019, 41 (11): 2633- 2640. | |
22 | 符小卫, 魏可, 李斌, 等. 基于联盟的无人机集群编队控制方法[J]. 系统工程与电子技术, 2019, 41 (11): 2559- 2572. |
FU X W , WEI K , LI B , et al. Formation control method of UAVs based on alliance[J]. Systems Engineering and Electronics, 2019, 41 (11): 2559- 2572. | |
23 | OLFATI-SABER R . Flocking for multi-agent dynamic systems: algorithms and theory[J]. IEEE Trans.on Automatic Control, 2006, 51 (3): 401- 420. |
24 | SAMPEDRO C, BAVLE H, SANCHEZ-LOPEZ J L, et al. A flexible and dynamic mission planning architecture for UAV swarm coordination[C]//Proc.of the International Conference on Unmanned Aircraft Systems, 2016: 355-363. |
25 | LU G , ZHOU M T , NIU X Z , et al. A survey of proximity graphs in wireless networks[J]. Journal of Software, 2008, 19 (4): 888- 911. |
26 | CHEN P Y , HERO A O . Assessing and safeguarding network resilience to nodal attacks[J]. IEEE Communications Magazine, 2014, 52 (11): 138- 143. |
27 | HOSSEINI S , BARKER K , RAMIREZ-MARQUEZ J E . A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2015, 145, 47- 61. |
28 | HOLLING C S . Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4, 1- 23. |
29 | FRANCIS R , BEKERA B . A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering and System Safety, 2014, 121, 90- 103. |
30 | TURNQUIST M , VUGRIN E . Design for resilience in infrastructure distribution networks[J]. Environment Systems and Decisions, 2013, 33 (1): 104- 120. |
31 | STERBENZ J P G , HUTCHISON D , CETINKAYA E K , et al. Resilience and survivability in communication networks: strategies, principles, and survey of disciplines[J]. Computer Networks, 2010, 54 (8): 1245- 1265. |
32 | 颜炳莅.分形物流网络拓扑弹性研究[D].武汉:武汉理工大学, 2016. |
YAN B L. Research on topological resilience of fractal logistics networks[D]. Wuhan: Wuhan University of Technology, 2016. | |
33 | GAO J , LIU X , LI D , et al. Recent progress on the resilience of complex networks[J]. Energies, 2015, 8 (10): 12187- 12210. |
34 | Department of Homeland Security. Critical infrastructure security and resilience functional relationships[R]. Washington DC: Department of Homeland Security, 2013. |
35 | TRAN H T , DOMERCANT J C , MAVRIS D N . A network-based cost comparison of resilient and robust system-of-systems[J]. Procedia Computer Science, 2016, 95, 126- 133. |
36 | 孙强, 梁晓龙, 尹忠海, 等. UAV集群自组织飞行建模与控制策略研究[J]. 系统工程与电子技术, 2016, 38 (7): 1649- 1653. |
SUN Q , LIANG X L , YIN Z H , et al. UAV swarm self-organized flight modeling and control strategy[J]. Systems Engineering and Electronics, 2016, 38 (7): 1649- 1653. | |
37 | BJERKNES J D , WINFIELD A F T . On fault tolerance and scalability of swarm robotic systems[M]. Heidelberg: Springer, 2013. |
38 | GAO C , ZHEN Z Y , GONG H J . A self-organized search and attack algorithm for multiple unmanned aerial vehicles[J]. Aerospace Science and Technology, 2016, 54, 229- 240. |
39 | TRAN H T , BALCHANOS M , DOMERCANT J C , et al. A framework for the quantitative assessment of performance-based system resilience[J]. Reliability Engineering and System Safety, 2016, 158, 73- 84. |
40 | WANG L Z, ZHAO X J, ZHANG Y, et al. Unmanned aerial vehicle swarm mission reliability modeling and evaluation method oriented to systematic and networked mission[J]. Chinese Journal of Aeronautics, accepted. |
41 | AKSARAY D , YASIN Y A , FERON E , et al. Message-passing strategy for decentralized connectivity maintenance in multiagent surveillance[J]. Journal of Guidance Control and Dynamics, 2013, 39 (3): 11153303. |
42 | KURDI H, HOW J, BAUTISTA G. Bio-inspired algorithm for task allocation in multi-UAV search and rescue missions[C]//Proc.of the AIAA Guidance, Navigation, and Control Conference, 2016. |
43 | NAJJAR W , GAUDIOT J L . Network resilience: a measure of network fault tolerance[J]. IEEE Trans.on Computers, 1990, 39 (2): 174- 181. |
44 | XIAO Y D , LAO S Y , HOU L L , et al. Mitigation of malicious attacks on network observation[J]. International Journal of Modern Physics C, 2015, 26 (10): 1550108. |
45 | BHATIA U , KUAMR D , KODRA E , et al. Network science based quantification of resilience demonstrated on the Indian Railways Network[J]. PlosOne, 2015, 10 (11): e0142890. |
46 | REED D A , KAPUR K C , CHRISTIE R D . Methodology for assessing the resilience of networked infrastructure[J]. IEEE Systems Journal, 2009, 3 (2): 174- 180. |
47 | CHEN S M , HUA Y X , ZHU Z M , et al. Fast flocking algorithm for multi-agent systems by optimizing local interactive topology[J]. Acta Automatica Sinica, 2015, 41 (12): 2092- 2099. |
48 | ZHAO H L , YANG H T , FU Y . Analysis method of resilience in networked command and control information system[J]. Journal of Command and Control, 2015, 1 (1): 14- 18. |
49 | MA S Q , DONG C Y , MA M Y , et al. Formation reconfiguration control of quadrotor UAVs based on adaptive communication topology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (4): 841- 850. |
50 | BEKMEZCI I , SAHINGOZ O K , TEMEL Ș , et al. Flying ad-hoc networks (FANETs) : a survey[J]. Ad Hoc Networks, 2013, 11 (3): 1254- 1270. |
51 | XIONG F , LI A , WANG H , et al. An SDN-MQTT based communication system for battlefield UAV swarms[J]. IEEE Communications Magazine, 2019, 57 (8): 41- 47. |
52 | 文少杰, 黄传河. FANET中时延感知的垮层优化方法[J]. 通信学报, 2018, 39 (4): 2018070. |
WEN S J , HUANG C H . Delay-aware cross-layer optimization method for FANET[J]. Journal on Communications, 2018, 39 (4): 2018070. | |
53 | 王凯, 刘树新, 陈鸿昶, 等. 一种基于节点间资源承载度的链路预测方法[J]. 电子与信息学报, 2019, 41 (5): 214- 223. |
WANG K , LIU S X , CHEN H X , et al. A new link prediction method for complex networks based on resources carrying capacity between nodes[J]. Journal of Electronics and Information Technology, 2019, 41 (5): 214- 223. | |
54 | SHU J , LIU M L , SHANG Y Q , et al. Link quality prediction model based on Gaussian process regression[J]. Journal on Communications, 2018, 39 (7): 148- 156. |
55 | 胡曦, 李喆, 刘军. 移动Ad hoc网络中基于链路和稳定性预测的按压路由协议[J]. 电子与信息学报, 2010, 32 (2): 284- 289. |
HU X , LI Z , LIU J . A link stability prediction-based on-demand routing protocol in mobile Ad hoc networks[J]. Journal of Electronics and Information Technology, 2010, 32 (2): 284- 289. | |
56 | 张薇玮, 丁文锐, 刘春辉. 复杂环境中无人机数据链干扰效果预测方法[J]. 系统工程与电子技术, 2016, 38 (4): 760- 766. |
ZHANG W W , DING W R , LIU C H . Prediction of interference effect on UAV data link in complex environment[J]. Systems Engineering and Electronics, 2016, 38 (4): 760- 766. | |
57 | SHU J , ZHANG X P , LIU L L , et al. Multi-nodes link prediction method based on deep convolution neural networks[J]. Acta Electronica Sinica, 2018, 46 (12): 2970- 2977. |
58 | GONCALVES F J , PATEL A , BATISTA B L A , et al. A systematic technical survey of DTN and VDTN routing protocols[J]. Computer Standards and Interfaces, 2016, 48, 139- 159. |
59 | 柳强, 何明, 刘锦涛, 等. 无人机"蜂群"的蜂拥涌现行为识别与抑制机理[J]. 电子学报, 2019, 47 (2): 374- 381. |
LIU Q , HE M , LIU J T , et al. A mechanism for identifying and suppressing the emergent flocking behaviors of UAV swarms[J]. Acta Electronica Sinica, 2019, 47 (2): 374- 381. | |
60 | 张飞, 陈卫东. 移动机器人编队自修复的切换拓扑控制[J]. 控制理论与应用, 2010, 27 (3): 289- 295. |
ZHANG F , CHEN W D . Switched topology control for self-healing of mobile robot formation[J]. Control Theoryand Applications, 2010, 27 (3): 289- 295. | |
61 | 何明, 梁文辉, 陈秋丽, 等. 水下水下移动无线传感器网络拓扑愈合与优化[J]. 控制与决策, 2015, 2, 251- 255. |
HE M , LIANG W H , CHEN Q L , et al. Topology self-healing algorithm of mobile underwater wireless sensor networks[J]. Control and Decision, 2015, 2, 251- 255. | |
62 | AI-SHABI M A, HATAMLEH K S, ASAD A. UAV dynamics model parameters estimation techniques: a comparison study[C]//Proc.of the Applied Electrical Engineering and Computing Technologies, 2013. |
63 | CANTARELO O C, ROLLAND L, O'YOUNG S. Validation discussion of an unmanned aerial vehicle(UAV) using JSBSim flight dynamics model compared to Matlab/Simulink AeroSim blockset[C]//Proc.of the IEEE International Conference on Systems, Man, and Cybernetics, 2016: 3989-3994. |
64 | 代波, 何玉庆, 谷丰, 等. 基于加速度反馈增强的旋翼无人机抗风扰控制[J]. 机器人, 2020, 42 (1): 79- 88. |
DAI B , HE Y Q , GU F , et al. Acceleration feedback enhanced controller for wind disturbance rejection of rotor unmanned aerial vehicle[J]. Robot, 2020, 42 (1): 79- 88. |
[1] | 李传旭, 孟秀云, 王捷. 基于扰动观测器的飞行器轨迹跟踪控制器设计[J]. 系统工程与电子技术, 2022, 44(8): 2593-2600. |
[2] | 张佳唯, 钱凤臣, 杨俊强, 赵骞, 张峥嵘. 弹性光网络中路由与频谱分配算法综述[J]. 系统工程与电子技术, 2022, 44(6): 2001-2010. |
[3] | 刘文吉, 杜佳璐, 李健, 李诤. 基于超螺旋滑模的船载稳定平台镇定控制[J]. 系统工程与电子技术, 2022, 44(5): 1662-1669. |
[4] | 张大力, 夏红伟, 张朝兴, 马广程, 王常虹. 改进萤火虫算法及其收敛性分析[J]. 系统工程与电子技术, 2022, 44(4): 1291-1300. |
[5] | 安通, 王鹏, 王建华, 汤国建, 潘玉龙, 陈海山. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术, 2022, 44(3): 956-966. |
[6] | 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术, 2022, 44(3): 967-976. |
[7] | 杨兴家, 段克清, 李想, 祁炜. 无人机集群协同探测距离解模糊方法[J]. 系统工程与电子技术, 2022, 44(2): 480-489. |
[8] | 符小卫, 潘静. 无人机集群规避动态障碍物的分布式队形控制[J]. 系统工程与电子技术, 2022, 44(2): 529-537. |
[9] | 王琮, 沈会良, 夏永祥, 白光晗, 方依宁. 装备保障体系关键节点分析[J]. 系统工程与电子技术, 2022, 44(10): 3134-3142. |
[10] | 王岩韬, 杨拯. 航班运行风险网络的传播与控制改进[J]. 系统工程与电子技术, 2021, 43(9): 2544-2552. |
[11] | 毕可心, 吴明功, 张文斌, 温祥西, 杜坎. 基于速度障碍法的飞行冲突网络建模与分析[J]. 系统工程与电子技术, 2021, 43(8): 2163-2173. |
[12] | 陈志伟, 王靖, 谷长超, 章健淳, 钟季龙. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43(8): 2347-2354. |
[13] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. |
[14] | 田睿, 董绪荣. 小波分解与Prophet框架融合的电离层VTEC预报模型[J]. 系统工程与电子技术, 2021, 43(3): 610-622. |
[15] | 管灵, 朱晨曦, 董纯柱, 殷红成. 基于模式/区域分解的无人机集群电磁特性快速分析[J]. 系统工程与电子技术, 2021, 43(10): 2697-2705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||