系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 1-11.doi: 10.12305/j.issn.1001-506X.2026.01.01

• 电子技术 • 上一篇    下一篇

利用分布式辐射源闪烁诱偏的抗反辐射方法

林志康(), 刘甲磊, 马佳智, 施龙飞, 徐进宝   

  1. 国防科技大学电子科学学院,湖南 长沙 410073
  • 收稿日期:2024-11-13 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 刘甲磊 E-mail:z_k.kang@nudt.edu.cn
  • 作者简介:林志康(1997—),男,博士研究生,主要研究方向为雷达电子防御、强化学习
    马佳智(1987—),男,副研究员,博士,主要研究方向为雷达对抗、极化雷达信号处理
    施龙飞(1978—),男,研究员,博士,主要研究方向为新体制雷达、雷达电子防御
    徐进宝(2001—),男,工程师,主要研究方向为雷达电子防御、雷达信号处理
  • 基金资助:
    湖南省科技创新计划(2022RC3067)资助课题

Counter-anti-radiation method method using distributed radiation source blinking decoy

Zhikang LIN(), Jialei LIU, Jiazhi MA, Longfei SHI, Jinbao XU   

  1. College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China
  • Received:2024-11-13 Online:2026-01-25 Published:2026-02-11
  • Contact: Jialei LIU E-mail:z_k.kang@nudt.edu.cn

摘要:

针对多个反辐射无人机(anti-radiation unmanned aerial vehicle, ARUAV)同时来袭时如何通过分布式辐射源协同实现有效诱偏以保护地面雷达的问题,提出一种面向双架ARUAV打击的分布式辐射源闪烁诱偏方法,旨在以大距离的分布式布站方式对辐射源进行闪烁辐射控制来影响ARUAV被动测角,进而改变其运行轨迹,最终在末端诱偏使其落点位于雷达辐射源安全半径之外。该方法首先分析信号延时控制形成脉内组合信号对ARUAV的测角诱偏原理并设计ARUAV运动模型,然后建立四维Q表深度Q学习框架,根据雷达安全距离条件建立奖励函数,以一定空域的ARUAV位置和速度作为输入,进行强化学习模型训练。仿真结果表明,所提方法诱偏距离至少为515.91 m,优于传统固定辐射诱偏方法,且较同等布站条件固定辐射的末端诱偏方法诱偏距离至少提升68.59%。

关键词: 反辐射无人机, 分布式辐射源, 强化学习, 深度Q学习

Abstract:

Addressing the issue of how to effectively decoy and protect ground radar through distributed radiation sources coordination when multiple anti-radiation unmanned aerial vehicles (ARUAV) attack simultaneously, a distributed radiation sources blinking decoy method for dual-ARUAV strikes is proposed. The aim is to control the blinking radiation of radiation sources in a distributed stationing manner at a long distance to affect the passive angle measurement of ARUAV, thereby altering its trajectory and ultimately decoying it to land outside the safe radius of the radar radiation sources at the end. This method first analyzes the principle of angle measurement deception for ARUAV using intra-pulse combined signals formed by signal delay control, and designs an ARUAV motion model. Then, a four-dimensional Q-table deep Q-learning framework is established, and a reward function is established based on radar safety distance conditions. The ARUAV position and velocity in a certain airspace are used as inputs for reinforcement learning model training. The simulation results show that the decoy distance of the proposed method is at least 515.91 m, which is better than that of the traditional fixed radiation decoy method, and the decoy distance is at least 68.59% higher than that of the terminal decoy method of fixed radiation under the same station distribution conditions.

Key words: anti-radiation unmanned aerial vehicle (ARUAV), distributed radiation source, reinforcement learning, deep Q-learning (DQL)

中图分类号: