系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4024-4033.doi: 10.12305/j.issn.1001-506X.2025.12.03

• 电子技术 • 上一篇    

基于DBO-ICEEMDAN-NLM的光纤周界入侵信号去噪

马愈昭1,*, 吕其明1, 李猛2   

  1. 1. 中国民航大学天津市智能信号与图像处理重点实验室,天津 300300
    2. 中国民航大学空中交通管理学院,天津 300300
  • 收稿日期:2024-11-18 修回日期:2025-02-21 出版日期:2025-03-13 发布日期:2025-03-13
  • 通讯作者: 马愈昭
  • 作者简介:吕其明(1999—),男,硕士研究生,主要研究方向为光纤传感
    李 猛(1987—),男,副研究员,博士,主要研究方向为光电信息、航空气象
  • 基金资助:
    天津市教委科研计划(2021KJ033)资助课题

Optical fiber perimeter intrusion signal denoising based on DBO-ICEEMDAN-NLM

Yuzhao MA1,*, Qiming LYU1, Meng LI2   

  1. 1. Tianjin Key Laboratory for Intelligent Signal and Image Processing,Civil Aviation University of China,Tianjin 300300,China
    2. College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China
  • Received:2024-11-18 Revised:2025-02-21 Online:2025-03-13 Published:2025-03-13
  • Contact: Yuzhao MA

摘要:

针对复杂环境下光纤周界入侵告警系统受噪声干扰难以对入侵事件识别和定位的问题,提出基于蜣螂优化(dung beetle optimizer,DBO)算法优化改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)结合非局部均值(non-local mean,NLM)滤波的振动信号去噪方法。首先利用DBO-ICEEMDAN对信号分解获得若干本征模态函数(intrinsic mode function,IMF),然后引入样本熵对IMF分量的复杂程度进行判决,最后将NLM滤波后的信噪混合分量和低频信号分量进行重构完成对信号的去噪。通过振动仿真信号验证,并对光纤周界双Mach-Zehnder系统实测的敲击、攀爬和跑动信号去噪。以敲击信号为例,与变分模态分解-排列熵和NLM滤波-自适应噪声完备集合经验模态分解-小波阈值去噪方法相比,所提方法的噪声抑制比分别提高了2.94 dB和1.08 dB,均方根误差分别降低了72.41%和57.89%,在更好地滤除信号噪声的同时充分保留了信号的关键特征。

关键词: 光纤传感, 信号去噪, 蜣螂优化算法, 经验模态分解, 非局部均值滤波

Abstract:

A vibration signal denoising method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) optimized by the dung beetle optimizer (DBO) algorithm, combined with non local mean (NLM) filtering is proposed to address the problem of difficulty in identifying and locating of intrusion events in optical fiber perimeter intrusion alarm systems under noise interference in complex environments. Firstly, DBO-ICEEMDAN is used to decompose the signal and obtain several intrinsic mode function (IMF). Then, sample entropy is introduced to determine the complexity of the IMF components. Finally, the NLM filtered signal-to-noise mixture and low-frequency signal components are reconstructed to complete the denoising of the signal. Verify through vibration simulation signals and denoise the impact, climbing, and running signals measured in the optical fiber perimeter dual Mach-Zehnder system. Taking the tapping signal as an example, compared with the variational mode decomposition-permutation entropy and NLM filtering-adaptive noise complete set empirical mode decomposition wavelet threshold denoising methods, the proposed method improves the noise suppression ratio by 2.94 dB and 1.08 dB respectively, and reduces the root mean square error by 72.41% and 57.89% respectively. The proposed method effectively filters out signal noise while fully preserving the key features of the signal.

Key words: optical fiber sensing, signal denoising, dung beetle optimizer (DBO) algorithm, empirical mode decomposition (EMD), non-local mean filter

中图分类号: