| 1 |
PENDAO C, SILVA I. Optical fiber sensors and sensing networks: overview of the main principles and applications[J]. Sensors, 2022, 22 (19): 7554.
doi: 10.3390/s22197554
|
| 2 |
MAHMOUD S S. Practical aspects of perimeter intrusion detection and nuisance suppression for distributed fiber-optic sensors[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 2517311.
|
| 3 |
LI S Z, PENG R Z, LIU Z L, et al. Perimeter monitoring of urban buried pipeline threated by construction activities based on distributed fiber optic sensing and real-time object detection[J]. Optics Express, 2024, 32 (2): 2590- 2606.
doi: 10.1364/OE.509487
|
| 4 |
LIU K, JIN X B, JIANG J F, et al. Interferometer-based distributed optical fiber sensors in long-distance vibration detection: a review[J]. IEEE Sensors Journal, 2022, 22 (22): 21428- 21444.
doi: 10.1109/JSEN.2022.3213036
|
| 5 |
LIAO Y H, LI K, GONG Y D. Research on the noise suppression by φ-OTDR[J]. Journal of Optics, 2024, 53, 4721- 4730.
doi: 10.1007/s12596-023-01600-4
|
| 6 |
BARANGER J, AGUET J, VILLEMAIN O. Fast thresholding of SVD clutter filter using the spatial similarity matrix and a sum-table algorithm[J]. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70 (8): 821- 830.
doi: 10.1109/TUFFC.2023.3289235
|
| 7 |
WANG J, LIU Z, WANG Y, et al. Extraction of strain characteristic signals from wind turbine blades based on EEMD-WT[J]. Energy Engineering, 2023, 120 (5): 1149- 1162.
doi: 10.32604/ee.2023.025209
|
| 8 |
马愈昭, 刘逵, 张岩峰, 等. CEEMD结合改进小波阈值的激光雷达信号去噪算法[J]. 系统工程与电子技术, 2023, 45 (1): 93- 100.
|
|
MA Y Z, LIU K, ZHANG Y F, et al. Laser radar signal denoising algorithm based on CEEMD combined with improved wavelet threshold[J]. Systems Engineering and Electronics, 2023, 45 (1): 93- 100.
|
| 9 |
ZHANG C C, SHI Y N, LIU J G, et al. A denoising method of mine microseismic signal based on NAEEMD and frequency-constrained SVD[J]. The Journal of Supercomputing, 2022, 78 (15): 17095- 17113.
doi: 10.1007/s11227-022-04554-9
|
| 10 |
于淼, 张耀鲁, 何禹潼, 等. 变分模态分解-排列熵方法用于分布式光纤振动传感系统去噪[J]. 光学学报, 2022, 42 (7): 62- 73.
|
|
YU M, ZHANG Y L, HE Y T, et al. Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system[J]. Acta Optica Sinica, 2022, 42 (7): 62- 73.
|
| 11 |
WANG Y W, CHEN P, ZHAO Y M, et al. A denoising method for mining cable PD signal based on genetic algorithm optimization of VMD and wavelet threshold[J]. Sensors, 2022, 22 (23): 9386.
doi: 10.3390/s22239386
|
| 12 |
冯帅, 曹茹茹, 马愈昭, 等. 改进CEEMDAN结合新型小波变换的激光雷达去噪算法[J]. 系统工程与电子技术, 2024, 46 (12): 4054- 4061.
|
|
FENG S, CAO R R, MA Y Z, et al. Lidar denoising algorithm of improved CEEMDAN combined with novel wavelet change[J]. Systems Engineering and Electronics, 2024, 46 (12): 4054- 4061.
|
| 13 |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2011: 4144−4147.
|
| 14 |
章芳情, 袁方, 贺玉, 等. 基于NLM- CEEMDAN和样本熵的水电机组振动信号去噪[J]. 中国农村水利水电, 2023 (6): 286- 294.
|
|
ZHANG F Q, YUAN F, HE Y, et al. Vibration signal de-noising of hydropower units based on NLM-CEEMDAN and sample entropy[J]. China Rural Water and Hydropower, 2023 (6): 286- 294.
|
| 15 |
GEETHA K, HOTA M K. Microseismic signal denoising based on variational mode decomposition with adaptive non-local means filtering[J]. Pure and Applied Geophysics, 2023, 180 (11): 3709- 3731.
doi: 10.1007/s00024-023-03365-0
|
| 16 |
XU L, SU H Z, CAI D S, et al. RDTS noise reduction method based on ICEEMDAN-FE-WSTD[J]. IEEE Sensors Journal, 2022, 22 (18): 17854- 17863.
doi: 10.1109/JSEN.2022.3196944
|
| 17 |
YUAN D S, LIU F, YIN Z G, et al. Fault diagnosis of motor bearing based on the SCNGO-ICEEMDAN method[C]//Proc. of the IEEE 7th International Electrical and Energy Conference, 2024: 4225-4231.
|
| 18 |
LI K, WU H, LIU X M, et al. Intelligent diagnosis of rolling bearing based on ICEEMDAN-WTD of noise reduction and multi-strategy fusion optimization SCNs[J]. IEEE Access, 2024, 12, 36908- 36923.
doi: 10.1109/ACCESS.2024.3373554
|
| 19 |
TANG J, LIU G, PAN Q T. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (10): 1627- 1643.
doi: 10.1109/JAS.2021.1004129
|
| 20 |
EMAMBOCUS B A S, JASSER M B, AMPHAWAN A. A survey on the optimization of artificial neural networks using swarm intelligence algorithms[J]. IEEE Access, 2023, 11, 1280- 1294.
doi: 10.1109/ACCESS.2022.3233596
|
| 21 |
COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14 (6): 19- 29.
|
| 22 |
XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79, 7305- 7336.
doi: 10.1007/s11227-022-04959-6
|
| 23 |
MARQUES J A L, CORTEZ P C, MADEIRO J P V, et al. Nonlinear characterization and complexity analysis of cardiotocographic examinations using entropy measures[J]. The Journal of Supercomputing, 2020, 76 (2): 1305- 1320.
doi: 10.1007/s11227-018-2570-8
|
| 24 |
CHEN J Y, ZHOU D, LYU C, et al. An integrated method based on CEEMD-SampEn and the correlation analysis algorithm for the fault diagnosis of a gearbox under different working conditions[J]. Mechanical Systems and Signal Processing, 2018, 113 (8): 102- 111.
|
| 25 |
KUMAR S, PANIGRAHY D, SAHU P K. Denoising of electrocardiogram (ECG) signal by using empirical mode decomposition (EMD) with non-local mean (NLM) technique[J]. Biocybernetics and Biomedical Engineering, 2018, 38 (2): 297- 312.
doi: 10.1016/j.bbe.2018.01.005
|
| 26 |
SINGH P, PRADHAN G. Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering[J]. Australasian Physical & Engineering Sciences in Medicine, 2018, 41 (4): 891- 904.
|
| 27 |
VAN M, KANG H J, SHIN K S. Rolling element bearing fault diagnosis based on non-local means denoising and empirical mode decomposition[J]. IET Science, Measurement & Technology, 2014, 8(6): 571−578.
|
| 28 |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8 (1): 22- 34.
|
| 29 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the International Conference on Neural Networks, 1995: 1942−1948.
|
| 30 |
MA C Y, LIU T G, LIU K, et al. Long-range distributed fiber vibration sensor using an asymmetric dual Mach-Zehnder interferometers[J]. Journal of Lightwave Technology, 2016, 34 (9): 2235- 2239.
doi: 10.1109/JLT.2016.2532877
|