1 |
YUAN Y Z, XU J, LIU L Y. Correlation-based maximal invariant statistic for spectrum sensing[J]. IEEE Communications Letters, 2023, 27 (5): 1402- 1406.
doi: 10.1109/LCOMM.2023.3250243
|
2 |
CHOUHAN A, CAPTAIN K, PARMAR A, et al. Defending cooperative spectrum sensing from byzantine attacks: an effective entropy-based weighted algorithm[J]. IEEE Wireless Communications Letters, 2023, 12 (12): 2063- 2067.
doi: 10.1109/LWC.2023.3306814
|
3 |
ZHANG Q Y, ZENG W H, QIN Z J, et al. TaP2-CSS: a trustworthy and privacy-preserving cooperative spectrum sensing solution based on blockchain[J]. IEEE Internet of Things Journal, 2024, 11 (8): 14634- 14646.
doi: 10.1109/JIOT.2023.3344648
|
4 |
ZHENG M, CHEN L, LIANG W, et al. Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks[J]. IEEE Trans. on Green Communications and Networking, 2017, 1 (1): 29- 39.
doi: 10.1109/TGCN.2016.2646819
|
5 |
XIE S L, LIU Y, ZHANG Y, et al. A parallel cooperative spectrum sensing in cognitive radio networks[J]. IEEE Trans. on Vehicular Technology, 2010, 59 (8): 4079- 4092.
doi: 10.1109/TVT.2010.2056943
|
6 |
CHEN Y, ZHAO Q, SWAMI A. Distributed spectrum sensing and access in cognitive radio networks with energy constraint[J]. IEEE Trans. on Signal Processing, 2009, 57 (2): 783- 797.
doi: 10.1109/TSP.2008.2007928
|
7 |
MA S W, WANG Y H, REN J X, et al. A cooperative spectrum sensing method based on soft low-rank subspace clustering[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69 (9): 3954- 3958.
|
8 |
MOAWAD A, YAO K C, MANSOUR A, et al. Spectrum sensing by cepstral covariance detection[J]. IEEE Communications Letters, 2022, 26 (6): 1323- 1327.
doi: 10.1109/LCOMM.2022.3157773
|
9 |
KUMAR A, SAHA S, BHATTACHARYA R. Wavelet transform based novel edge detection algorithms for wideband spectrum sensing in CRNs[J]. AEU-International Journal of Electronics and Communications, 2018, 84, 100- 110.
|
10 |
FAWZI A, EL-SHAFAI W, ABD-ELNABY M, et al. Adaptive two-stage spectrum sensing model using energy detection and wavelet denoising for cognitive radio systems[J]. International Journal of Communication Systems, 2020, 33 (16): e4400.
doi: 10.1002/dac.4400
|
11 |
申滨, 王欣, 陈思吉, 等. 基于机器学习主用户发射模式分类的蜂窝认知无线电网络频谱感知[J]. 电子与信息学报, 2021, 43 (1): 92- 100.
|
|
SHEN B, WANG X, CHEN S J, et al. Machine learning based primary user transmit mode classification for spectrum sensing in cellular cognitive radio network[J]. Journal of Electronics & Information Technology, 2021, 43 (1): 92- 100.
|
12 |
周金, 李玉芝, 李斌. 小样本图像处理方法赋能的宽带频谱感知[J]. 电子与信息学报, 2023, 45 (3): 1102- 1110.
|
|
ZHOU J, LI Y Z, LI B. Image processing-driven spectrum sensing with small training samples[J]. Journal of Electronics & Information Technology, 2023, 45 (3): 1102- 1110.
|
13 |
RADHI A A, ABDULLAH H N, AKKAR H A R. Denoised Jarque-Bera features-based K-Means algorithm for intelligent cooperative spectrum sensing[J]. Digital Signal Processing: A Review Journal, 2022, 129, 103659.
doi: 10.1016/j.dsp.2022.103659
|
14 |
RADHI A A, AKKAR H A R, ABDULLAH H N. Skewness and access kurtosis as denoised mixed features-based K-Medoids for cooperative spectrum sensing[J]. Physical Communication, 2022, 54, 101831.
doi: 10.1016/j.phycom.2022.101831
|
15 |
LIU H, ZHU X, FUJII T. A new classification-like scheme for spectrum sensing using spectral correlation and stacked denoising autoencoders[J]. IEICE Transactions on Communications, 2018, E101.B (11): 2348- 2361.
doi: 10.1587/transcom.2017EBP3447
|
16 |
AKAY B, KARABOGA D, AKAY R. A comprehensive survey on optimizing deep learning models by metaheuristics[J]. Artificial Intelligence Review, 2022, 55 (2): 829- 894.
doi: 10.1007/s10462-021-09992-0
|
17 |
王磊, 张劲, 叶秋炫. LDACS系统基于循环谱和残差神经网络的频谱感知方法[J]. 系统工程与电子技术, 2024, 46 (9): 3231- 3238.
|
|
WANG L, ZHANG J, YE Q X. Spectrum sensing method based on cyclic spectrum and residual network in LDACS[J]. Systems Engineering and Electronics, 2024, 46 (9): 3231- 3238.
|
18 |
HUANG Y C, ZHANG C, PAN C Y. Spectrum sensing for DTMB-A system using accumulated autocorrelation[J]. IEEE Access, 2022, 10, 113610- 113618.
doi: 10.1109/ACCESS.2022.3217496
|
19 |
SHI Y F, YANG C, WANG J, et al. A near-real-time forecasting model of high-frequency radiowave propagation factor fusion based on the ICEEMDAN decomposition and Bi-LSTM methods[J]. IEEE Trans. on Antennas and Propagation, 2024, 72 (7): 6032- 6044.
doi: 10.1109/TAP.2024.3413298
|
20 |
LI X, LI H, YANG Z, et al. Radiation signal denoising method of loaded coal-rock based on ICEEMDAN-PCK-Means-IP[J]. IEEE Sensors Journal, 2023, 23 (19): 23103- 23118.
doi: 10.1109/JSEN.2023.3306932
|
21 |
TANG L H, ZHAO L, JIANG Y. An SVM-based feature detection scheme for spatial spectrum sensing[J]. IEEE Communications Letters, 2023, 27 (8): 2132- 2136.
doi: 10.1109/LCOMM.2023.3289982
|
22 |
HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97, 849- 872.
doi: 10.1016/j.future.2019.02.028
|
23 |
CHEN L, FENG C, MA Y. Improved harris hawks optimization for global optimization and engineering design[J]. Cluster Computing, 2024, 27 (2): 2003- 2027.
doi: 10.1007/s10586-023-04020-y
|
24 |
MIRRASHID M, NADERPOUR H. Transit search: an optimization algorithm based on exoplanet exploration[J]. Results in Control and Optimization, 2022, 7, 100127.
doi: 10.1016/j.rico.2022.100127
|
25 |
SHEHAB M, MASHAL I, MOMANI Z, et al. Harris hawks optimization algorithm: variants and applications[J]. Archives of Computational Methods in Engineering, 2022, 29 (7): 5579- 5603.
doi: 10.1007/s11831-022-09780-1
|
26 |
JAKOB J, GROSS M, GUNTHER T. A fluid flow data set for machine learning and its application to neural flow map interpolation[J]. IEEE Trans. on Visualization and Computer Graphics, 2021, 27 (2): 1279- 1289.
doi: 10.1109/TVCG.2020.3028947
|
27 |
CAO J W, FENG Y M, ZHENG R Z, et al. Two-stream attention 3-D deep network-based childhood epilepsy syndrome classification[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 2503412.
|
28 |
SABER M, EL RHARRAS A, SAADANE R, et al. Spectrum sensing for smart embedded devices in cognitive networks using machine learning algorithms[J]. Procedia Computer Science, 2020, 176, 2404- 2413.
doi: 10.1016/j.procs.2020.09.311
|
29 |
TAVARES C H A, MARINELLO J C, PROENCA Jr M L, et al. Machine learning-based models for spectrum sensing in cooperative radio networks[J]. IET Communications, 2020, 14 (18): 3102- 3109.
doi: 10.1049/iet-com.2019.0941
|
30 |
YAKKATI R R, YAKKATI R R, TRIPATHY R K, et al. Radio frequency spectrum sensing by automatic modulation classification in cognitive radio system using multiscale deep CNN[J]. IEEE Sensors Journal, 2022, 22 (1): 926- 938.
doi: 10.1109/JSEN.2021.3128395
|