

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3464-3481.doi: 10.12305/j.issn.1001-506X.2025.10.30
• 通信与网络 • 上一篇
收稿日期:2024-09-04
出版日期:2025-10-25
发布日期:2025-10-23
通讯作者:
李二帅
E-mail:w17396370867@163.com
作者简介:王瑞琳(1999—),女,博士研究生,主要研究方向为机载无线通信、数据链、基于统计优先级的多址接入协议基金资助:
Ruilin WANG(
), Feng HE, Ershuai LI
Received:2024-09-04
Online:2025-10-25
Published:2025-10-23
Contact:
Ershuai LI
E-mail:w17396370867@163.com
摘要:
针对一体化联合作战环境下的协同作战需求,分析美军新一代数据链战术瞄准网络技术(tactical targeting network technology, TTNT)的关键技术体系及发展应用方向。对照传输控制协议/网际协议五层协议,将TTNT数据链细化分为分层式网络体系架构,分析其在消息格式、信息传输、通信安全等层面的关键技术,归纳各技术的发展现状。将TTNT数据链与其他数据链进行性能与优缺点对比,总结TTNT与其他数据链的协同关系及未来发展趋势,可对TTNT数据链关键技术融合提供设计指导。
中图分类号:
王瑞琳, 何锋, 李二帅. TTNT数据链分层式网络体系及其关键技术分析[J]. 系统工程与电子技术, 2025, 47(10): 3464-3481.
Ruilin WANG, Feng HE, Ershuai LI. TTNT data link layered network system and its key technology analysis[J]. Systems Engineering and Electronics, 2025, 47(10): 3464-3481.
表1
TTNT主要技术指标"
| 名称 | 技术指标 | 指标分析 |
| 网络规模 | 网络可容纳200个节点,可扩展到 | 大规模打击过程中支持管理庞大数量的飞机 |
| 入网/离网时间 | Ad hoc组网,预先加载密匙,可实现快速网络授权 | |
| 总传输速率 (网络吞吐量) | 可在网络利用率极高的情况下实现可靠的消息传输 | |
| 单平台传输速率 (单用户吞吐量) | 100 nautical miles(185 km) 2 Mbps 200 nautical miles(370 km) 500 kbps 300 nautical miles(555 km) 220 kbps | 速率/编码自适应且吞吐量高,是传统战术数据链的50倍 |
| 时延特性 | 100 nautical miles(185 km) 2 ms 200 nautical miles(370 km)6 ms 300 nautical miles(555 km) 30 ms | 高速实时传输,毫秒级时延 |
| 工作频段 | 16个信号跳频点分布在射频L波段内的3个不同频段 | |
| 双工模式 | 全双工 | 适应5G通信的灵活全双工 |
| 业务类型 | 提供服务质量保证机制,分为8个优先级[ | 加入服务质量(quality of service, QoS)机制来实现差别服务, 支持单播、组播、广播服务 |
| 接入方式 | 基于统计优先级的多址接入[ | 动态环境[ |
| 传输方式 | 改进的高速切换的全向加定向天线[ 脉冲控制,调制编码 | 空口无线密匙传输,无需物理接触即可更新密匙 |
| 管理方式 | 分布式,实时,无单点故障,扁平网络 | 各节点之间完全对等,无中心和集中控制单元, 不存在层次化关系,节点移动性强 |
| 安全性 | 多级独立安全,抗干扰,低截获概率/低可探测性 | 抗干扰抗截获能力强,减少自由空间信号特征,支持“静默节 点”工作模式 |
| 兼容性 | 与传统的Link16等数据链共存 | 支持C4ISR系统多种战术应用 |
| 灵活性 | 高动态,自组织,可扩展,易操作 | 超视距Ad hoc路由,高速运动平台(支持 |
表4
Ad hoc网络跨层TCP改进方法"
| 改进方法 | 设计思路 | 简单说明 | 涉及层次 |
| Split-TCP[ | 减少路由失败 | 将长TCP连接通过路由代理节点划分为若干局部段,通过局部确认提高端到端传输交付率 | 传输层、网络层 |
| TCP-显式链路失效通知[ | 区分路由失败与拥塞丢包 | 在路由协议的路由失败消息中携带显式链路失败通告消息,反馈给源节点 | 传输层、网络层 |
| ATCP[ | 区分路由失败与拥塞丢包 | 在传输层和网络层间增加Ad hoc TCP层,监听网际控制报文协议报文和ECN报文来获取网络状态 | 传输层、网络层 |
| TCP-F[ | 区分路由失败与拥塞丢包 | 在路由协议中引入路由失败通知和路由重建通知两种路由状态,解决拥塞窗口减小的问题 | 传输层、网络层 |
| TCP-Bus[ | 区分路由失败与拥塞丢包 | 在路由协议中引入路由故障通知和路由重建通知两种路由维护消息,改善TCP的传输质量 | 传输层、网络层 |
| TCP网络编码[ | 区分路由失败与拥塞丢包 | 在传输层和网络层间增加网络编码层,对原始数据包进行编译码, 避免进入拥塞控制 | 传输层、网络层 |
表6
基于SNMP的典型网络管理工具"
| 工具名称 | 功能说明 |
| MCS | 机动控制系统,形成OPORD |
| RBECS | 产生网络标识、跳频参数、密匙等网络参数 |
| 系统配置(版本) | 分配IP子网地址、自治域号、电台标识等参数 |
| 战术作战中心 | 指控和态势信息交互中心,生成指挥所路由器和交换机的配置文件 |
| 21世纪旅及旅以下战斗指挥系统 | SINCGARS规划管理工具,提供实时和近实时作战信息 |
| 战术互联网配置/战术互联网设计 | 基于21世纪旅及旅以下战斗指挥系统的战术互联网配置/设计工具 |
| 网络控制站-EPLRS | EPLRS规划管理工具,依据系统配置(版本)和战术互联网配置/战术互联网设计形成管理信息库参数 |
| 增强型网络管理器 | 除不能管理EPLRS原导航和定位功能,可替代原有网络控制站-EPLRS,提高规划效率 |
表8
部分美国空军现役主要数据链性能对比"
| 名称 | 工作频段 | 传输距离 | 速率/时延 | 组网能力 | 通用能力 | 带宽能力 | 抗扰能力 | 覆盖能力 |
| TTNT (武协类) | L波段 | 略低于Link16 | 2 Mbit/s@100 n mile 500 kbit/s@200 n mile 220 kbit/s@300 n mile 毫秒级时延 | 高速动态无中心全向组网, 节点数超200个 | 军种通用 | 高速率、低时延 | 抗干扰 | 区域视距 |
| IFDL (武协类) | Q波段 | 16 km | 28.8~238 kbit/s 毫秒级时延 | 点对点,节点最多16个 | 专型专用 | 低时延 | 抗干扰、低截获 | 局域编队 |
| MADL (武协类) | K波段 | 不明确 | 最高不超过500 kbit/s 毫秒级时延 | 点对点,节点最多25个 | 军种通用 | 高速率、低时延 | 抗干扰、低截获 | 局域编队 |
| 态势感知数据链 (态感类) | UHF波段 | 50 km | 16~64 kbit/s 毫秒级时延 | 自组织网络,通常支持16到 64个节点通信 | 军种通用 | 低时延 | 抗干扰、低截获 | 局域编队 |
| 战术通用数据链 (情侦类) | Ku波段 | 200 km | 上行为200 kbit/s 下行为1.544~10.71 Mbit/s | 点对点 | 军种通用 | 大容量、高速率 | 抗干扰 | 区域视距 |
| Link16 (战术类) | L波段 | 300 n mile (无中继) 1 200 n mile (有中继) | 28.8~238 kbit/s 秒级时延 | TDMA体制,单网用户 容量数百个 | 全域通用 | 弱 | 抗干扰 | 区域视距 |
| 1 |
王博, 仲维彬. 外军数据链发展趋势[J]. 现代导航, 2022, 13 (2): 134- 137,142.
doi: 10.3969/j.issn.1674-7976.2022.02.013 |
|
WAMG B, ZHONG W B. Overview for data link of foreign army[J]. Modern Navigation, 2022, 13 (2): 134- 137,142.
doi: 10.3969/j.issn.1674-7976.2022.02.013 |
|
| 2 |
余福荣, 张艳, 蒋雪, 等. 武器协同数据链发展趋势及关键技术[J]. 火力与指挥控制, 2021, 46 (3): 179- 185.
doi: 10.3969/j.issn.1002-0640.2021.03.030 |
|
YU F R, ZHANG Y, JIANG X, et al. Development trend and key technologies of weapon cooperative data link[J]. Fire Control & Command Control, 2021, 46 (3): 179- 185.
doi: 10.3969/j.issn.1002-0640.2021.03.030 |
|
| 3 | 黄振, 周永将. 美军网络中心战的重要元素—协同数据链[J]. 现代导航, 2017, 8 (1): 70- 73. |
| HUANG Z, ZHOU Y J. Element of US army network centric warfare–cooperative data link[J]. Modern Navigation, 2017, 8 (1): 70- 73. | |
| 4 | 吕娜, 张岳彤. 数据链理论与系统[M]. 北京: 电子工业出版社, 2018: 303−345. |
| LYU N, ZHANG Y T. Theory and system of data link[M]. 2rd ed. Beijing: Publishing House of Electronics Industry, 2018: 303−345. | |
| 5 | 张沛, 王志国, 王震. 美国空军数据链体系发展现状及建设方向[J]. 指挥信息系统与技术, 2023, 14 (1): 8- 14. |
| ZHANG P, WANG Z G, WANG Z. Development status and construction direction of United States Air Force data link system[J]. Command Information System and Technology, 2023, 14 (1): 8- 14. | |
| 6 | 金荣, 张衡阳. 美军TTNT数据链发展应用现状[J]. 现代导航, 2014, 5 (2): 80- 82. |
| JIN R, ZHANG H Y. Development situation of tactical targeting networks for US force[J]. Modern Navigation, 2014, 5 (2): 80- 82. | |
| 7 |
周虎. 数据链集成设计与应用研究[J]. 现代导航, 2020, 11 (1): 36- 40.
doi: 10.3969/j.issn.1674-7976.2020.01.008 |
|
ZHOU H. Research on design and application of data link integration[J]. Modern Navigation, 2020, 11 (1): 36- 40.
doi: 10.3969/j.issn.1674-7976.2020.01.008 |
|
| 8 | YANG G X, WEBER S. Uisce: characteristic-based routing in mobile Ad Hoc networks[C]//Proc. of the 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop, 2011: 119−122. |
| 9 |
CAI Y G, YU F, LI J, et al. Medium access control for unmanned aerial vehicle (UAV) Ad Hoc networks with full-duplex radios and multipacket reception capability[J]. Journal Wireless Networks, 2013, 19 (6): 1469- 1484.
doi: 10.1007/s11276-013-0545-5 |
| 10 | 郑爱民. Link-16原理与应用[M]. 北京: 国防工业出版社, 2016: 24−27. |
| ZHENG A M. Link-16 principles and applications[M]. Beijing: National Defense Industry Press, 2016: 24−27. | |
| 11 | 刘轶凡. 针对TTNT的非协作式跳频GMSK信号检测[D]. 长沙: 国防科技大学, 2017. |
| LIU Y F. Non-cooperative frequency hopping GMSK signal detection for TTNT[D]. Changsha: National University of Defense Technology, 2017. | |
| 12 | ZHENG W Q, HU J, LIU Y F, et al. Analysis and research on TTNT data link[C]//Proc. of the International Conference on Frontiers of Manufacturing Science & Measuring Technology, 2017: 684−689. |
| 13 |
李海涛. 美军战术目标瞄准组网技术分析及对抗策略探究[J]. 长江信息通信, 2021, 34 (1): 113- 115.
doi: 10.3969/j.issn.1673-1131.2021.01.037 |
|
LI H T. Technical analysis and countermeasure strategy research of US military tactical target targeting network[J]. Changjiang Information & Communications, 2021, 34 (1): 113- 115.
doi: 10.3969/j.issn.1673-1131.2021.01.037 |
|
| 14 | WANG Y, BENSAOU B. Priority based multiple access for service differentiation in wireless ad-hoc networks[C]//Proc. of the IFIP International Conference on Mobile and Wireless Communication Networks, 2000: 14−30. |
| 15 | LIU X D, LI H G, YANG J, et al. Time-sensitive network simulation for multi marine-air platforms basing on SPMA protocol[C]//Proc. of the 10th International Conference on Communication Software and Networks, 2018: 195−199. |
| 16 | ZHENG W Q, JIN H, GUO J P, et al. Research on a new data link MAC protocol and its channel occupancy[J]. Computer Simulation, 2019, 36 (7): 148- 152. |
| 17 |
何小利, 宋钰, 曾薇. 网格资源调度的研究[J]. 计算机与数字工程, 2010, 38 (6): 57- 59.
doi: 10.3969/j.issn.1672-9722.2010.06.018 |
|
HE X L, SONG Y, ZENG W. Research on grid resource scheduling[J]. Computer & Digital Engineering, 2010, 38 (6): 57- 59.
doi: 10.3969/j.issn.1672-9722.2010.06.018 |
|
| 18 | 张绍芳, 关文卿. 全球一体化作战—未来美军发展重点[J]. 飞航导弹, 2014, (12): 1- 4. |
| ZHANG S F, GUAN H Q. Global integrated operations-future development focus of the US army[J]. Aerospace Technology, 2014, (12): 1- 4. | |
| 19 | 计宏亮, 赵楠. 解读美军联合信息环境计划[J]. 国防科技, 2015, 36 (5): 89- 95. |
| JI H L, ZHAO N. A Study of joint information environment of US army[J]. National Defense Science & Technology, 2015, 36 (5): 89- 95. | |
| 20 | 姚晓白, 王武民. 海战场网电空间作战能力建设问题研究[J]. 军事运筹与系统工程, 2014, 28 (3): 39- 42. |
| YAO X B, WANG W M. Research on the construction of cyberspace warfare capability in marine battlefields[J]. Military Operations Research and Systems Engineering, 2014, 28 (3): 39- 42. | |
| 21 |
穆军林, 朱国阳. 美军“舒特”系统攻击方式及应对措施[J]. 装备制造技术, 2012, (9), 131- 133.
doi: 10.3969/j.issn.1672-545X.2012.08.047 |
|
MU J L, ZHU G Y. US Military “Suter” system attacks and counter measures[J]. Equipment Manufacturing Technology, 2012, (9), 131- 133.
doi: 10.3969/j.issn.1672-545X.2012.08.047 |
|
| 22 |
牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34 (5): 37- 43.
doi: 10.3969/j.issn.1671-4547.2013.05.007 |
|
NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34 (5): 37- 43.
doi: 10.3969/j.issn.1671-4547.2013.05.007 |
|
| 23 | BROWM T X, ARGROW B, DIXON C, et al. Ad Hoc UAV ground network[C]//Proc. of the USENIX Technical Conference, 2004: 67−76. |
| 24 | WANG J, HE C L, WU W, at al. Track quality evaluation method research on tactical data link[C]//Proc. of the 6th International Conference on Advanced Cloud and Big Data, 2018: 89−92. |
| 25 | LIU Y F, JIN H, YU Q M, et al. Research on transmission waveform structure and rate scaled of new generation data link[C]//Proc. of the International Conference on Information Science and Control Engineering, 2017: 1686−1689. |
| 26 | 赵志勇, 毛忠阳, 张嵩, 等. 数据链系统与技术第2版[M]. 北京: 电子工业出版社, 2022. |
| ZHAO Z Y, MAO Z Y, ZHANG S, et al. Data link system and technology, second edition[M]. Beijing: Publishing House of Electronics Industry, 2022. | |
| 27 |
李桂花. 外军无人机数据链的发展现状与趋势[J]. 电讯技术, 2014, 54 (6): 851- 856.
doi: 10.3969/j.issn.1001-893x.2014.06.029 |
|
LI G H. Status and trend of foreign military data link for unmanned aerial vehicles[J]. Telecommunication Engineering, 2014, 54 (6): 851- 856.
doi: 10.3969/j.issn.1001-893x.2014.06.029 |
|
| 28 | 叶礼邦, 付海波. 美军战术目标瞄准网络技术分析与启示[J]. 飞航导弹, 2014, (8): 30- 34,45. |
| YE L B, FU H B. Analysis and inspiration of US tactical target aiming network technology[J]. Aerospace Technology, 2014, (8): 30- 34,45. | |
| 29 |
陈会林, 教富龙, 袁泮江, 等. 一种智能抗干扰无人机测控系统设计[J]. 电讯技术, 2021, 61 (6): 703- 709.
doi: 10.3969/j.issn.1001-893x.2021.06.007 |
|
CHEN H L, JIAO F L, YUAN B J, et al. Design of an intelligent anti-jamming TT&C system for UAV[J]. Telecommunication Engineering, 2021, 61 (6): 703- 709.
doi: 10.3969/j.issn.1001-893x.2021.06.007 |
|
| 30 |
陈赤联, 唐政, 胡军锋, 等. 数据链2.0: 智能化战争的制胜利器[J]. 指挥与控制学报, 2020, 6 (1): 5- 12.
doi: 10.3969/j.issn.2096-0204.2020.01.0005 |
|
CHEN C L, TANG Z, HU J F, et al. Data link 2.0: the victory maker of intelligent war[J]. Journal of Command and Control, 2020, 6 (1): 5- 12.
doi: 10.3969/j.issn.2096-0204.2020.01.0005 |
|
| 31 | 张平安. 战术数据链的跨层拥塞控制技术研究[D]. 重庆: 重庆邮电大学, 2021: 18−20. |
| ZHANG P A. Research on cross-layer congestion control technology of tactical data link[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021: 18−20. | |
| 32 | 徐晓玲. Ad hoc网络的TCP性能分析与改进[D]. 兰州: 兰州大学, 2009: 17−33. |
| XU X L. Analysis and improvement of TCP performance of Ad Hoc networks[D]. Lanzhou: Lanzhou University, 2009: 17−33. | |
| 33 |
程宇, 闫鑫欣. 无线Ad hoc网络路由技术研究与应用分析[J]. 舰船电子工程, 2023, 43 (7): 119- 122.
doi: 10.3969/j.issn.1672-9730.2023.07.027 |
|
CHENG Y, YAN X X. Research and application of routing protocols in wireless Ad Hoc networks[J]. Ship Electronic Engineering, 2023, 43 (7): 119- 122.
doi: 10.3969/j.issn.1672-9730.2023.07.027 |
|
| 34 | 张云徽. 通信与计算协同的Ad Hoc网络端到端传输技术研究[D]. 西安: 西安电子科技大学, 2023. |
| ZHANG Y H. Study on end-to-end transmission in Ad Hoc networks with communication and computing collaboration[D]. Xi’an: Xidian University, 2023. | |
| 35 | DESHPANDE A, KAUSHAL A. Feedback-based adaptive speedy transmission (FAST) control protocol to improve the performance of TCP over Ad-Hoc networks[C]// Proc. of the International Conference on Advances in Computing, Communications and Informatics, 2016: 2034−2041. |
| 36 |
CHEN Y K, JI F, GUAN Q S, et al. Adaptive RTO for handshaking-based MAC protocols in underwater acoustic networks[J]. Future Generation Computer Systems-the International Journal of Escience, 2018, 86, 1185- 1192.
doi: 10.1016/j.future.2017.08.022 |
| 37 | SHAHAB U I, ALI M, ISHTIAQ A, et al. Performance analysis of simple TCP and F-TCP for smooth connectivity in wireless communication[C]//Proc. of the 16th International Bhurban Conference on Applied Sciences and Technology, 2019: 913−918. |
| 38 |
KIM B H, CALIN D. On the split-TCP performance over real 4G LTE and 3G wireless networks[J]. IEEE Communications Magazine, 2017, 55 (4): 124- 131.
doi: 10.1109/MCOM.2017.1600369 |
| 39 | CHANG W, NI C, KIN G, et al. Early contention notification for TCP performance in mobile Ad Hoc networks[C]//Proc. of the Agents and Multi-Agent Systems: Technologies and Applications, 2010. |
| 40 |
HUSSAIN M I, AHMED N, AHMED M Z L, et al. QoS provisioning in wireless mesh networks: a survey[J]. Wireless Personal Communications, 2022, 122, 157- 195.
doi: 10.1007/s11277-021-08893-3 |
| 41 |
CHANG B J, LI Y H, CHEN S P, et al. Cross-layer-based adaptive TCP algorithm for cloud computing services in 4G LTE-a relaying communication[J]. Wireless Networks, 2016, 22 (8): 2579- 2595.
doi: 10.1007/s11276-015-1117-7 |
| 42 |
MISHRA T K, SAHOO K S, BILAL M, et al. Adaptive congestion control mechanism to enhance TCP performance in cooperative IoV[J]. IEEE Access, 2023, 11, 9000- 9013.
doi: 10.1109/ACCESS.2023.3239302 |
| 43 |
BHARDWAJ A, El-OCLA H. Multipath routing protocol using genetic algorithm in mobile ad hoc networks[J]. IEEE Access, 2020, 8, 177534- 177548.
doi: 10.1109/ACCESS.2020.3027043 |
| 44 | OGURI S, URATA M, ENDO M. Data model for registered tangible cultural properties using linked data[C]//Proc. of the IEEE 9th Global Conference on Consumer Electronics, 2020: 651−654. |
| 45 |
胡君, 叶俊杰. 基于链路时间预测的移动Ad Hoc网路由[J]. 传感技术学报, 2019, 32 (6): 945- 949.
doi: 10.3969/j.issn.1004-1699.2019.06.021 |
|
HU J, YE J J. Link duration-prediction-based routing protocol in mobile Ad Hoc networks[J]. Chinese Journal of Sensors and Actuators, 2019, 32 (6): 945- 949.
doi: 10.3969/j.issn.1004-1699.2019.06.021 |
|
| 46 | 鲁小晶. 基于数据链的组网路由技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
| LU X J. Research on network routing technology based on data link[D]. Harbin: Harbin Engineering University, 2019. | |
| 47 | 范祥瑞. 协同制导数据链认知抗干扰组网技术研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018. |
| FAN X R. The research of cognitive anti-jamming networking technology for collaborative guidance data link[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2018. | |
| 48 | 李繁, 张晓宇, 刘继. 基于信号方差的Ad-Hoc网络路由算法[J]. 计算机工程与设计, 2023, 44 (10): 2902- 2908. |
| LI F, ZHANG X Y, LIU J. Signal variance based Ad-Hoc network routing algorithm[J]. Computer Engineering and Design, 2023, 44 (10): 2902- 2908. | |
| 49 |
LI X L, BIAN X, LI M Q. Routing selection algorithm for mobile Ad Hoc networks based on neighbor node density[J]. Sensors, 2024, 24 (2): 325.
doi: 10.3390/s24020325 |
| 50 |
MALBAR M, JEVTIC N. An improvement of AODV protocol for the overhead reduction in scalable dynamic wireless ad hoc networks[J]. Wireless Network, 2022, 28 (3): 1039- 1051.
doi: 10.1007/s11276-022-02890-5 |
| 51 |
SHARMA D K, PATRA A N, KUMAR C. P-AODV: a priority based route mainte-nance process in mobile ad hoc networks[J]. Wireless Personal Communications, 2017, 95 (4): 4381- 4402.
doi: 10.1007/s11277-017-4085-7 |
| 52 |
PATEL J, EL-OCLA H. Energy efficient routing protocol in sensor networks using genetic algorithm[J]. Sensors, 2021, 21 (21): 7060.
doi: 10.3390/s21217060 |
| 53 |
SUO L, LIU L, SU Z Y, et al. A reliable low-latency multipath routing algorithm for urban rail transit Ad Hoc networks[J]. Sensors, 2023, 23, 5576.
doi: 10.3390/s23125576 |
| 54 |
SARKAR D, CHOUDHURY S, MAJUMDER A. Enhanced-ant-AODV for optimal route selection in mobile ad-hoc network[J]. Journal of King Saud University-Computer and Information Sciences, 2021, 33 (10): 1186- 1201.
doi: 10.1016/j.jksuci.2018.08.013 |
| 55 |
MOHSENI M, AMIRGHAFOURI F, POURGHEBLEH B. CEDAR: a cluster-based energy-aware data aggregation routing protocol in the internet of things using capuchin search algorithm and fuzzy logic[J]. Peer-to-Peer Networking and Applications, 2023, 16 (1): 189- 209.
doi: 10.1007/s12083-022-01388-3 |
| 56 | 张现伟, 杨济安, 张高峰. 分级组织无线多跳网络路由协议HSR研究[J]. 电信建设, 2004, (6): 35- 39. |
| ZHANG X W, YANG J A, ZHANG G F. Research on hierarchical organization wireless multi hop network routing protocol HSR[J]. Telecommunication Construction, 2004, (6): 35- 39. | |
| 57 | 杜传报, 全厚德, 李召瑞, 等. 无线双通道Ad Hoc网络分层路由协议设计与分析[J]. 指挥与控制学报, 2015, 1 (4): 458- 464. |
| DU C B, QUAN H D, LI Z R, et al. Design and analysis of hierarchical routing protocol for wireless dual-channel Ad Hoc networks[J]. Journal of Command and Control, 2015, 1 (4): 458- 464. | |
| 58 | 蔡鑫, 赵霞, 谢冬云. 数据链网络规划技术[J]. 指挥信息系统与技术, 2017, 8 (6): 46- 49. |
| CAI X, ZHAO X, XIE D Y. Data link network planning technology[J]. Command Information System and Technology, 2017, 8 (6): 46- 49. | |
| 59 |
易凯, 陈妍. 协同作战下数据链联合应用与发展[J]. 科技视界, 2016, 31 (13): 300- 301.
doi: 10.3969/j.issn.2095-2457.2016.13.222 |
|
YI K, CHEN Y. Joint application and development of data link under the cooperative engagement[J]. Science & Technology Vision, 2016, 31 (13): 300- 301.
doi: 10.3969/j.issn.2095-2457.2016.13.222 |
|
| 60 |
岳丽军, 蔡姝, 胡兵. 美海军陆战队指挥信息系统装备体系及特点分析[J]. 舰船科学技术, 2022, 44 (16): 185- 189.
doi: 10.3404/j.issn.1672-7649.2022.16.040 |
|
YUE L J, CAI S, HU B. Analysis on equipment system and characteristics of US marine corps command information system[J]. Ship Science and Technology, 2022, 44 (16): 185- 189.
doi: 10.3404/j.issn.1672-7649.2022.16.040 |
|
| 61 | 梁青, 张文飞, 上官艺伟. 无人机自组网中AODV路由协议的改进[J]. 西安邮电大学学报, 2018, 23 (6): 48- 53. |
| LIANG Q, ZHANG W F, SHANGGUAN Y W. Improvement of AODV routing protocol in unmanned aerial vehicle ad hoc network[J]. Journal of Xi’an University of Posts and Telecommunications, 2018, 23 (6): 48- 53. | |
| 62 | STEPHEN M C, KELLI A H, SCOTT J F Z. Statistical priority-based multiple access. System and Method[P]. US: 7680077 B1, 2010. |
| 63 |
GAO S Y, YANG M, YU H. Modeling and parameter optimization of statistical priority-based multiple access protocol[J]. China Communications, 2019, 16 (9): 45- 61.
doi: 10.23919/JCC.2019.09.004 |
| 64 | GE Z B, ZHANG W B, HAO Y, et al. Window adaptive backoff algorithm basing on statistical priority-based multiple access protocol[C]//Proc. of the 2nd International Conference on Intelligent Computing and Human-Computer Interaction, 2021: 171−174. |
| 65 | LI Z, ZHAO J. Design and verification of improved SPMA algorithm in multi-hop environment[C]//Proc. of the IEEE 10th International Conference on Information, Communication and Networks, 2022: 81−85. |
| 66 | WANG L M, LI H, LIU Z F. Research and pragmatic-improvement of statistical priority-based multiple access protocol[C]//Proc. of the 2nd IEEE International Conference on Computer and Communications, 2016: 2057−2063. |
| 67 | LIU J, PENG T, QUAN Q Y, et al. Performance analysis of the statistical priority based multiple access[C]//Proc. of the 3rd IEEE International Conference on Computer and Communications, 2017: 30−35. |
| 68 | YANG M Y, ZHANG Q, YU H, et al. Modeling and performance analysis of statistical priority-based multiple access protocol[C]//Proc. of the International Conference on Innovative Computing and Cloud Computing, 2018: 399−404. |
| 69 |
ZHANG Y, HE Y, WANG X J, et al. Modeling and performance analysis of statistical priority-based multiple access: a stochastic geometry approach[J]. IEEE Internet Of Things Journal, 2022, 9 (15): 13942- 13954.
doi: 10.1109/JIOT.2022.3144272 |
| 70 |
ZHANG Y, SUN H G, HE Y, et al. A spatio-temporal analytical model for statistical priority-based multiple access network[J]. IEEE Wireless Communications Letters, 2023, 12 (1): 153- 157.
doi: 10.1109/LWC.2022.3219641 |
| 71 | 朱德富. 战术数据链MAC层机制研究[D]. 重庆: 重庆邮电大学, 2021. |
| ZHU D F. Research on MAC layer mechanism of tactical data link[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. | |
| 72 | 周赛. TTNT数据链的多址接入协议研究[D]. 西安: 西安电子科技大学, 2015. |
| ZHOU S. On the MAC protocol of TTNT[D]. Xian: Xidian University, 2015. | |
| 73 |
徐达峰, 杨建波, 刘鹏. 战术目标瞄准网络技术的物理层研究[J]. 科技视界, 2015, 14, 135- 137.
doi: 10.3969/j.issn.2095-2457.2015.33.102 |
|
XU D F, YANG J B, LIU P. Research on physical layer of tactical target aiming network technology[J]. Science & Technology Vision, 2015, 14, 135- 137.
doi: 10.3969/j.issn.2095-2457.2015.33.102 |
|
| 74 | 彭军伟, 柳林, 韩志韧. 基于多维特征联合捷变的数据链抗干扰技术[J]. 指挥信息系统与技术, 2017, 8 (6): 94- 98. |
| PENG J W, LIU L, HAN Z R. Antijamming technology for data link based on joint agility of multi-dimensional features[J]. Command Information System and Technology, 2017, 8 (6): 94- 98. | |
| 75 | 翟东, 达新宇, 张喆, 等. 多层WFRFT-MIMO卫星通信系统抗截获性能研究[J]. 弹箭与制导学报, 2021, 41 (1): 70- 75. |
| ZHAI D, DA X Y, ZHANG Z, et al. Research on anti-intercept performance of multi-layer WFRFT-MIMO satellite communication system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41 (1): 70- 75. | |
| 76 |
PIETRO R, OLIGERI G. Jamming mitigation in cognitive radio networks[J]. IEEE Network, 2013, 27 (3): 10- 15.
doi: 10.1109/MNET.2013.6523802 |
| 77 |
WU Y L, WANG B B, LIU K J Y, et al. Anti-jamming games in multi-channel cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30 (1): 4- 15.
doi: 10.1109/JSAC.2012.120101 |
| 78 | 冉雨, 陈大勇, 程郁凡, 等. 基于改进人工蜂群算法的认知抗干扰智能决策技术研究[J]. 信号处理, 2019, 35 (2): 240- 249. |
| RAN Y, CHEN D Y, CHENG Y F, et al. Cognitive anti-jamming intelligent decision based on improved artificial bee colony algorithm[J]. Journal of Signal Processing, 2019, 35 (2): 240- 249. | |
| 79 | ZOGG S J, CLARK S M, HAENDEL R S, et al. Wave-form for virtually simultaneous transmission and mul-tiple receptions system and method: US 7830781 B2[P]. 2010−11−09. |
| 80 | 徐鹏政, 于启月, 林泓池, 等. 基于毫米波通信的新型机间数据链系统[J]. 通信学报, 2023, 44 (4): 27- 37. |
| XU P Z, YU Q Y, LIN H C, et al. Novel air-to-air data link system based on millimeter wave communication[J]. Journal on Communications, 2023, 44 (4): 27- 37. |
| [1] | 王博, 周文雅, 汪涛, 郭继唐. 多阶段任务装备体系作战能力评估[J]. 系统工程与电子技术, 2023, 45(11): 3498-3506. |
| [2] | 梁家林, 熊伟. 基于作战环的武器装备体系能力评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1810-1819. |
| [3] | 罗承昆, 陈云翔, 项华春, 王莉莉. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794. |
| [4] | 姚天乐, 陶凤和, 胡起伟, 齐子元, 温亮. 基于多属性效用的主战坦克武器系统作战能力评估[J]. 系统工程与电子技术, 2019, 41(2): 358-364. |
| [5] | 陈士涛, 李大喜, 赵保军. 基于ONM的无人机信息支援远程体系作战能力评估[J]. 系统工程与电子技术, 2018, 40(6): 1274-1280. |
| [6] | 夏维, 刘新学, 范阳涛, 范金龙. 基于混合遗传BP神经网络的城市系统作战能力评估[J]. 系统工程与电子技术, 2017, 39(1): 107-113. |
| [7] | 樊延平, 郭齐胜, 王金良. 面向任务的装备体系作战能力需求满足度分析方法[J]. 系统工程与电子技术, 2016, 38(8): 1826-1832. |
| [8] | 张迪, 郭齐胜, 李智国. 基于ANP的武器装备体系能力有限层次评估方法[J]. 系统工程与电子技术, 2015, 37(4): 817-824. |
| [9] | 杨哲,李曙林,周莉,王怀威,石晓朋. 考虑作战能力的飞机生存力权衡设计[J]. 系统工程与电子技术, 2014, 36(1): 90-94. |
| [10] | 杨克巍, 李明浩, 鲁延京, 赵青松 . 基于平行执行的装备体系涌现行为导向性方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1218-1225. |
| [11] | 彭建亮, 孙秀霞, 蔡满意, 朱凡. 基于人工势场的防空威胁建模与仿真[J]. Journal of Systems Engineering and Electronics, 2010, 32(2): 338-341. |
| [12] | 蔡万勇,李侠,万山虎,王万磊. 防空雷达预警监视装备体系作战能力优化的新模式[J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2186-2191. |
| [13] | 韩晓明, 张金哲, 张君. 基于指数法的航空武器装备对比优势评估模型[J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1409-1414. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||