1 |
LIU W , HAARDT M , GRECO M S , et al. Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions[J]. IEEE Signal Processing Magazine, 2023, 40 (4): 80- 91.
|
2 |
SCHMIDT R . Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280.
|
3 |
ROY R , KAILATH T . ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1989, 37 (7): 984- 995.
|
4 |
WU S X , WAI H T , LI L , et al. A review of distributed algorithms for principal component analysis[J]. Proceedings of the IEEE, 2018, 106 (8): 1321- 1340.
|
5 |
CHEN P C , VAIDYANATHAN P . Distributed algorithms for array signal processing[J]. IEEE Trans. on Signal Processing, 2021, 69, 4607- 4622.
|
6 |
SANDRYHAILA A, KAR S, MOURA J M F. Finite-time distributed consensus through graph filters[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014: 1080-1084.
|
7 |
SCAGLIONE A, PAGLIARI R, KRIM H. The decentralized estimation of the sample covariance[C]//Proc. of the 42nd Asilomar Conference on Signals, Systems and Computers, 2008: 1722-1726.
|
8 |
曲志昱, 吴迪, 王炎. 基于线性变换的阵列幅相误差自校正算法[J]. 系统工程与电子技术, 2016, 38 (6): 1228- 1234.
doi: 10.3969/j.issn.1001-506X.2016.06.02
|
|
QU Z Y , WU D , WANG Y . Self-calibration method of gain/phase error based on linear transformation[J]. Systems Engineering and Electronics, 2016, 38 (6): 1228- 1234.
doi: 10.3969/j.issn.1001-506X.2016.06.02
|
9 |
宋奇. 分布式阵列误差校正算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.
|
|
SONG Q. Research on distributed array error calibration algorithm[D]. Harbin: Harbin Institute of Technology, 2023.
|
10 |
马严, 陈伯孝, 杨明磊, 等. 基于ESPRIT的多基线分布式阵列DOA估计方法[J]. 系统工程与电子技术, 2014, 36 (8): 1453- 1459.
doi: 10.3969/j.issn.1001-506X.2014.08.01
|
|
MA Y , CHEN B X , YANG M L , et al. Multi-baseline distri-buted array DOA estimation using ESPRIT algorithm[J]. Systems Engineering and Electronics, 2014, 36 (8): 1453- 1459.
doi: 10.3969/j.issn.1001-506X.2014.08.01
|
11 |
CAO S H , YE Z F , XU D Y , et al. A Hadamard product based method for DOA estimation and gain-phase error calibration[J]. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (2): 1224- 1233.
|
12 |
PESAVENTO M , GERSHMAN A B , WONG K M . Direction finding in partly calibrated sensor arrays composed of multiple subarrays[J]. IEEE Trans. on Signal Processing, 2002, 50 (9): 2113- 2115.
|
13 |
SEE C , GERSHMAN A B . Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays[J]. IEEE Trans. on Signal Processing, 2004, 52 (2): 329- 338.
|
14 |
ELKADER S A , GERSHMAN A B , WONG K M . Rank reduction direction-of-arrival estimators with an improved robustness against subarray orientation errors[J]. IEEE Trans. on Signal Processing, 2006, 54 (5): 1951- 1955.
|
15 |
LIAO B , CHAN S C . Direction finding with partly calibrated uniform linear arrays[J]. IEEE Trans. on Antennas and Propagation, 2011, 60 (2): 922- 929.
|
16 |
LIAO B , CHAN S C . Direction-of-arrival estimation in subarrays-based linear sparse arrays with gain/phase uncertainties[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 49 (4): 2268- 2280.
|
17 |
SULEIMAN W , PARVAZI P , PESAVENTO M , et al. Non-coherent direction-of-arrival estimation using partly calibrated arrays[J]. IEEE Trans. on Signal Processing, 2018, 66 (21): 5776- 5788.
|
18 |
STEFFENS C , PESAVENTO M . Block-and rank-sparse recovery for direction finding in partly calibrated arrays[J]. IEEE Trans. on Signal Processing, 2018, 66 (2): 384- 399.
|
19 |
TIRER T , BIALER O . A method for reducing the performance gap between non-coherent and coherent sub-arrays[J]. IEEE Trans. on Signal Processing, 2020, 68 (1): 3358- 3370.
|
20 |
ZHANG G B , HUANG T Y , LIU Y M , et al. Direction finding in partly calibrated arrays exploiting the whole array aperture[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (5): 5978- 5992.
|
21 |
SOON V C , TONG L , HUANG Y F , et al. A subspace method for estimating sensor gains and phases[J]. IEEE Trans. on Signal Processing, 1994, 42 (4): 973- 976.
|
22 |
刘涛, 王沙沙, 张驰, 等. 考虑韧性的无人机集群自组织区域覆盖方法[J]. 系统工程与电子技术, 2024, 46 (3): 942- 952.
doi: 10.12305/j.issn.1001-506X.2024.03.20
|
|
LIU T , WANG S S , ZHANG C , et al. Resilience based self-organizing region coverage method for unmanned aerial vehicle swarm[J]. Systems Engineering and Electronics, 2024, 46 (3): 942- 952.
doi: 10.12305/j.issn.1001-506X.2024.03.20
|
23 |
XIA F , SUN K , YU S , et al. Graph learning: a survey[J]. IEEE Trans. on Artificial Intelligence, 2021, 2 (2): 109- 127.
|
24 |
XIAO L, BOYD S. Fast linear iterations for distributed averaging[C]//Proc. of the 42nd IEEE International Conference on Decision and Control, 2003: 4997-5002.
|
25 |
SANDRYHAILA J M , MOURA . Discrete signal processing on graphs[J]. IEEE Trans. on Signal Processing, 2013, 61 (7): 1644- 1656.
|
26 |
LI J, WU S X, LI Q, et al. A parallel distributed algorithm for the power SVD method[C]//Proc. of the 22nd International Workshop on Signal Processing Advances in Wireless Communications, 2021: 161-165.
|
27 |
WYLIE M P, ROY S, SCHMITT R F. Self-calibration of linear equi-spaced (LES) arrays[C]//Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993: 281-284.
|
28 |
SHEWCHUK J R . An introduction to the conjugate gradient method without the agonizing pain[M]. Pittsburgh: Carnegie Mellon University, 1994.
|
29 |
LIU A F , LIAO G S , ZENG C , et al. An eigenstructure method for estimating DOA and sensor gain-phase errors[J]. IEEE Trans. on Signal Processing, 2011, 59 (12): 5944- 5956.
|
30 |
WEISS A J , FRIEDLANDER B . Eigenstructure methods for direction finding with sensor gain and phase uncertainties[J]. Circuits, Systems, and Signal Processing, 1990, 9 (3): 271- 300.
|