系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1516-1524.doi: 10.12305/j.issn.1001-506X.2025.05.14

• 系统工程 • 上一篇    

一种基于ML-PMRF的复杂仿真系统可信度智能分配方法

张欢1,2, 李伟1,2, 张冰3, 马萍1,2, 杨明1,2,*   

  1. 1. 哈尔滨工业大学航天学院, 黑龙江 哈尔滨 150001
    2. 复杂仿真系统建模与仿真全国重点实验室, 黑龙江 哈尔滨 150001
    3. 国家计算机网络应急技术处理协调中心, 北京 100029
  • 收稿日期:2024-01-22 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 杨明
  • 作者简介:张欢 (1996—), 女, 博士研究生, 主要研究方向为复杂仿真系统可信度评估、仿真分析与评估
    李伟 (1980—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为仿真实验设计、分析与评估、分布式仿真
    张冰 (1973—), 男, 高级工程师, 博士, 主要研究方向为仿真分析与评估、分布式仿真
    马萍 (1970—), 女, 教授, 博士研究生导师, 博士, 主要研究方向为分布式仿真系统设计与实现、复杂仿真系统可信度评估
    杨明 (1963—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为复杂仿真系统可信度评估、飞行器制导与控制

An intelligent credibility allocation method based on ML-PMRF for complex simulation systems

Huan ZHANG1,2, Wei LI1,2, Bing ZHANG3, Ping MA1,2, Ming YANG1,2,*   

  1. 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
    2. National Key Laboratory of Modeling and Simulation for Complex Systems, Harbin 150001, China
    3. National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
  • Received:2024-01-22 Online:2025-06-11 Published:2025-06-18
  • Contact: Ming YANG

摘要:

为保证复杂仿真系统达到可信度要求和缩短开发周期,应在构建复杂仿真系统之初确定各个仿真子系统的可信度。为此,提出一种复杂仿真系统可信度智能分配方法,在明确复杂仿真系统总体可信度的情况下获取各仿真子系统的可信度分配结果。根据复杂仿真系统的组成和结构,提出基于多层成对马尔可夫随机场(multi-layer pairwise Markov random field, ML-PMRF)的复杂仿真系统可信度分配模型构建方法。基于最大后验推理和离散萤火虫群优化,提出一种面向ML-PMRF的智能推理方法。通过实例应用及对比实验,验证了所提方法的有效性和合理性。

关键词: 复杂仿真系统, 可信度分配, 多层成对马尔可夫随机场, 智能推理

Abstract:

In order to ensure that the complex simulation system can meet the credibility requirements, the credibility of each simulation sub-system should be determined at the beginning of the construction of the complex simulation system to shorten the development cycle. Therefore, a complex simulation system intelligent credibility allocation method is proposed, which can obtain the credibility allocation results of each simulation sub-system under the condition of the known whole credibility of the complex simulation system. According to the composition and structure of the complex simulation system, the credibility allocation model of the complex simulation system is proposed based on the multi-layer pairwise Markov random field (ML-PMRF). Based on the maximum a posteriori inference and the discrete glowworm swarm optimization, an intelligent inference method for ML-PMRF is proposed. The effectiveness and rationality of the proposed method are verified by practical examples and comparative experiments.

Key words: complex simulation system, credibility allocation, multi-layer pairwise markov random field (ML-PMRF), intelligence inference

中图分类号: