1 |
郭福成, 李金洲, 张敏. 无源定位原理与方法[M]. 北京: 国防工业出版社, 2021.
|
|
GUO F C , LI J Z , ZHANG M . Passive location theories and methods[M]. Beijing: National Defense Industry Press, 2021.
|
2 |
OLSEN K E , ASEN W . Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (2): 4- 12.
doi: 10.1109/MAES.2017.160030
|
3 |
田中成, 刘聪锋. 无源定位技术[M]. 北京: 国防工业出版社, 2015.
|
|
TIAN Z C , LIU C F . Passive locating technology[M]. Beijing: National Defense Industry Press, 2015.
|
4 |
欧阳鑫信, 姚山峰, 杨宇翔, 等. 跳频信号的相参与非相参积累时频差估计方法[J]. 系统工程与电子技术, 2021, 43 (5): 1184- 1190.
doi: 10.12305/j.issn.1001-506X.2021.05.04
|
|
OUYANG X X , YAO S F , YANG Y X , et al. Coherent and non-coherent integration TDOA/FDOA estimation method of frequency-hopping signals[J]. Systems Engineering and Electronics, 2021, 43 (5): 1184- 1190.
doi: 10.12305/j.issn.1001-506X.2021.05.04
|
5 |
FOWLER M L , HU X . Signal models for TDOA/FDOA estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2008, 44 (4): 1543- 1550.
doi: 10.1109/TAES.2008.4667729
|
6 |
GUO F Y , ZHANG Z J , YANG L S . TDOA/FDOA estimation method based on dechirp[J]. IET Signal Processing, 2016, 10 (5): 486- 492.
doi: 10.1049/iet-spr.2015.0460
|
7 |
WANG Y Q , SUN G C , WANG Y , et al. A multi-pulse cross ambiguity function for the wideband TDOA and FDOA to locate an emitter passively[J]. Remote Sensing, 2022, 14 (15): 3545.
doi: 10.3390/rs14153545
|
8 |
CLEMENTS Z, HUMPHREYS T E, ELLIS P. Dual-satellite geolocation of terrestrial GNSS jammers from low earth orbit[C]// Proc. of the IEEE/ION Position, Location and Navigation Symposium, 2023: 458-469.
|
9 |
WU R S , ZHANG Y X , HUANG Y N , et al. A novel long-time accumulation method for double-satellite TDOA/FDOA interfe-rence localization[J]. Radio Science, 2018, 53 (1): 129- 142.
doi: 10.1002/2017RS006389
|
10 |
HU D X , HUANG Z , ZHANG S Y , et al. Joint TDOA, FDOA and differential Doppler rate estimation: method and its performance analysis[J]. Chinese Journal of Aeronautics, 2018, 31 (1): 137- 147.
doi: 10.1016/j.cja.2017.11.005
|
11 |
KIM D G , PARK G H , KIM H N , et al. Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 54 (1): 77- 89.
|
12 |
OUYANG X X , YAO S F , WAN Q . Multiple signal TDOA/FDOA joint estimation with coherent integration[J]. Electronics, 2023, 12 (9): 2151.
doi: 10.3390/electronics12092151
|
13 |
周力存. 面向双星干扰源定位的时频参数估计方法研究[D]. 西安: 西安电子科技大学, 2017.
|
|
ZHOU L C. The research on TDOA/FDOA estimation for double-satellites interference source location[D]. Xi'an: Xidian University, 2017.
|
14 |
LIU G H, REN J J. Improved generalized cross correlation communication radiation source time difference estimation method[C]//Proc. of the IEEE 6th International Conference on Electronics and Communication Engineering, 2023: 11-15.
|
15 |
唐娟, 行鸿彦. 基于二次相关的时延估计方法[J]. 计算机工程, 2007, 33 (21): 265- 267.
doi: 10.3969/j.issn.1000-3428.2007.21.094
|
|
TANG J , XING H Y . Time delay estimation based on second correlation[J]. Computer Engineering, 2007, 33 (21): 265- 267.
doi: 10.3969/j.issn.1000-3428.2007.21.094
|
16 |
SRIVASTAVA M , ANDERSON C L , FREED J H . A new wavelet denoising method for selecting decomposition levels and noise thresholds[J]. IEEE Access, 2016, 4, 3862- 3877.
doi: 10.1109/ACCESS.2016.2587581
|
17 |
KUANG W C , YANG P , LAI Y X , et al. Joint empirical mode decomposition and optimal frequency band estimation for adaptive low-frequency noise suppression[J]. Circuits, Systems, and Signal Processing, 2023, 42 (7): 4170- 4196.
doi: 10.1007/s00034-023-02309-2
|
18 |
王璟, 张立芳, 杨巨生, 等. 基于小波和经验模态分解的波长调制信号降噪研究[J]. 激光与光电子学进展, 2022, 59 (18): 481- 487.
|
|
WANG J , ZHANG L F , YANG J S , et al. Noise reduction of wavelength-modulated signal based on wavelet and empirical mode decomposition[J]. Laser & Optoelectronics Progress, 2022, 59 (18): 481- 487.
|
19 |
YAO Z J , LIU X J , YANG W J , et al. A coarse-to-fine denoising method for dynamic calibration signals of pressure sensor based on adaptive mode decompositions[J]. Measurement, 2020, 163, 107935- 107946.
doi: 10.1016/j.measurement.2020.107935
|
20 |
鲁一冰, 刘文清, 张玉钧, 等. 一种自适应层进式Savitzky-Golay光谱滤波算法及其应用[J]. 光谱学与光谱分析, 2019, 39 (9): 2657- 2663.
|
|
LU Y B , LIU W Q , ZHANG Y J , et al. An adaptive hierarchical Savitzky-Golay spectral filtering algorithm and its application[J]. Spectroscopy and Spectral Analysis, 2019, 39 (9): 2657- 2663.
|
21 |
位秀雷, 刘树勇. 多级奇异值分解和SG的通信雷达信号降噪方法[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44 (4): 658- 662.
doi: 10.3963/j.issn.2095-3844.2020.04.014
|
|
WEI X L , LIU S Y . Noise reduction method of communication radar signal based on multilevel singular value decomposition and Savitzky-Golay[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44 (4): 658- 662.
doi: 10.3963/j.issn.2095-3844.2020.04.014
|
22 |
CHETOUI M , AOUN M , MALTI R . Continuous-time MISO fractional system identification using higher-order-statistics[J]. Fractional Calculus and Applied Analysis, 2024, 27 (4): 1611- 1638.
doi: 10.1007/s13540-024-00297-x
|
23 |
DANDAWATE A V , GIANNAKIS G B . Differential delay-Doppler estimation using second and higher-order ambiguity functions[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140 (6): 410- 418.
doi: 10.1049/ip-f-2.1993.0060
|
24 |
SCHMID M , RATH D , DIEBOLD U . Correction to "Why and how Savitzky-Golay filters should be replaced"[J]. ACS Mea-surement Science Au, 2023, 3 (3): 236.
doi: 10.1021/acsmeasuresciau.3c00017
|
25 |
DOMBI J , DINEVA A . Adaptive Savitzky-Golay filtering and its applications[J]. International Journal of Advanced Intelligence Paradigms, 2020, 16 (2): 145- 156.
doi: 10.1504/IJAIP.2020.107011
|
26 |
SMITH W W , STEFFES P G . Time delay techniques for satellite interference location system[J]. IEEE Trans.on Aerospace and Electronic Systems, 1989, 25 (2): 224- 231.
doi: 10.1109/7.18683
|
27 |
SHIN D C, NIKIAS C L. Complex ambiguity function based on fourth-order statistics for joint estimation of frequency-delay and time-delay of arrival[C]//Proc. of the 27th Asilomar Conference on Signals, Systems and Computers, 1993: 461-465.
|
28 |
BUDROWEIT J . RF systems on chip and mixed-signal front-end devices: game-changing RF technologies for space applications[J]. IEEE Microwave Magazine, 2023, 24 (2): 49- 56.
doi: 10.1109/MMM.2022.3217988
|
29 |
SARDA K, CAJACOB D, ORR N, et al. Making the invisible visible: precision RF-emitter geolocation from space by the hawkeye 360 pathfinder mission[C]//Proc. of the AIAA/USU Conference on Small Satellites, 2018.
|
30 |
WONG S, KASHYAP N, JASSEMI-ZARGANI R, et al. Analysis of a space-based passive radiofrequency (RF) sensing system for geolocating targets on the Earth's surface[R]. Ottawa: Defence Research and Development Canada, 2021.
|
31 |
宋小勇, 毛悦, 宗文鹏, 等. 三星编队TDOA定位精度分析[J]. 测绘学报, 2023, 52 (10): 1631- 1639.
doi: 10.11947/j.AGCS.2023.20220269
|
|
SONG X Y , MAO Y , ZONG W P , et al. Analyzing the geolocation precision of TDOA using formation-flying cluster of three microsatellites[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52 (10): 1631- 1639.
doi: 10.11947/j.AGCS.2023.20220269
|