1 |
张慧芝,张天骐,方蓉,等.基于SVD-K-means算法的软扩频信号伪码序列盲估计[J].系统工程与电子技术,2024,46(1):326-333.
doi: 10.12305/j.issn.1001-506X.2024.01.37
|
|
ZHANGH Z,ZHANGT Q,FANGR,et al.Blind estimation of pseudo-code sequence of soft spread spectrum signal based on SVD-Kmeans algorithm[J].Systems Engineering and Electronics,2024,46(1):326-333.
doi: 10.12305/j.issn.1001-506X.2024.01.37
|
2 |
QIANG X Z, ZHANG T Q. Estimation of spreading code in non-periodic long-code DSSS signal[C]//Proc. of the 6th International Conference on Wireless Communications, Signal Processing and Networking, 2021: 162-165.
|
3 |
王勃,沈雷,卢英俊,等.非协作多用户短码直扩信号伪码估计[J].杭州电子科技大学学报(自然科学版),2023,43(3):9-15, 54.
|
|
WANGB,SHENL,LUY J,et al.Pseudo-code estimation of non-cooperative multi user short code direct spread signal[J].Journal of Hangzhou Dianzi University(Natural Sciences),2023,43(3):9-15, 54.
|
4 |
CHOIH,MOONM.Blind estimation of spreading sequence and data bits in direct-sequence spread spectrum communication systems[J].IEEE Access,2020,8,148066-148074.
doi: 10.1109/ACCESS.2020.3014884
|
5 |
CHOI Y, KIM D, JANG M, et al. Spreading sequence blind estimation in DSSS system using gradient ascent method[C]//Proc. of the 33rd International Telecommunication Networks and Applications Conference, 2023: 76-79.
|
6 |
赵知劲,李淼,詹毅,等.LSC-DSSS信号长短伪码盲估计[J].信号处理,2016,32(3):268-275.
|
|
ZHAOZ J,LIM,ZHANY,et al.Blind estimation of long and short PN code in LSC-DSSS signals[J].Journal of Signal Processing,2016,32(3):268-275.
|
7 |
喻盛琪,张天骐,赵健根.非周期长码直扩信号PN码盲估计[J].计算机工程与设计,2020,41(6):1509-1515.
|
|
YUS Q,ZHANGT Q,ZHAOJ G.Blind estimation of PN codes for non periodic long code DSSS signals[J].Computer Engineering and Design,2020,41(6):1509-1515.
|
8 |
强幸子,金翔,张天骐.基于相似度的NPLC-DSSS信号扩频码盲估计[J].电子学报,2022,50(8):2043-2048.
|
|
QIANGX Z,JINX,ZHANGT Q.Blind estimation for spread spectrum code of NPLC-DSSS signal based on similarity[J].Acta Electronica Sinica,2022,50(8):2043-2048.
|
9 |
张天骐.直扩信号的盲处理[M].北京:国防工业出版社,2012:156-197.
|
|
ZHANGT Q.Blind processing for signal of direct sequence spread spectrum[M].Beijing:National Defense Industry Press,2012:156-197.
|
10 |
杜柏阳,孔祥玉,冯晓伟,等.主奇异子空间跟踪算法与性能分析[J].控制理论与应用,2020,37(7):1491-1500.
|
|
DUB Y,KONGX Y,FENGX W,et al.Algorithm and its performance analysis of principal singular subspace tracking[J].Control Theory & Applications,2020,37(7):1491-1500.
|
11 |
XUL,OJAE,SUENC Y.Modified Hebbian learning for curve and surface fitting[J].Neural Networks,1992,5(3):441-457.
doi: 10.1016/0893-6080(92)90006-5
|
12 |
WILLIAMSR J.Feature discovery through error-correction learning[M].San Diego:Institute for Cognitive Science, University of California,1985.
|
13 |
XIANGY K,CHONGZ H,RUIX W.Modified gradient algorithm for total least square filtering[J].Neurocomputing,2006,70(1):568-576.
|
14 |
XUL.Least mean square error reconstruction principle for self-organizing neural-nets[J].Neural Networks,1993,6(5):627-648.
doi: 10.1016/S0893-6080(05)80107-8
|
15 |
YANGB.Projection approximation subspace tracking[J].IEEE Trans. on Signal Processing,1995,43(1):95-107.
doi: 10.1109/78.365290
|
16 |
FUZ,DOWLINGE M.Conjugate gradient eigenstructure tracking for adaptive spectral estimation[J].IEEE Trans. on Signal Processing,1995,43(5):1151-1160.
doi: 10.1109/78.382400
|
17 |
MATHEWG,REDDYV U,DASGUPTAS.Adaptive estimation of eigensubspace[J].IEEE Trans. on Signal Processing,1995,43(2):401-411.
doi: 10.1109/78.348123
|
18 |
MIAOY,HUAY.Fast subspace tracking and neural network learning by a novel information criterion[J].IEEE Trans. on Signal Processing,1998,64(7):1967-1979.
|
19 |
LIX,WANGL Q,MUNOCHIVEYIM.Experimental verification of the modified PSA algorithm[J].IEEE Access,2022,10(7):80394-80402.
|
20 |
孔祥玉,冯晓伟,胡昌华.广义主成分分析算法及应用[M].北京:国防工业出版社,2018:27-28.
|
|
KONGX Y,FENGX W,HUC H.General principal component analysis and application[M].Beijing:National Defense Industry Press,2018:27-28.
|
21 |
MASSEYJ.Shift-register synthesis and BCH decoding[J].IEEE Trans. on Information Theory,1969,15(1):122-127.
doi: 10.1109/TIT.1969.1054260
|
22 |
MANAS G, ARULMURUGAN A, SAVITHA R. HebbNet: a simplified hebbian learning framework to do biologically plausible learning[C]//Proc. of the ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 3115-3119.
|