| 1 | CRUYT A L M ,  GHOBBAR A A ,  CURRAN R .  A value-based assessment method of the supportability for a new aircraft entering into service[J]. IEEE Trans.on Reliability, 2014, 63 (4): 817- 829. doi: 10.1109/TR.2014.2335972
 | 
																													
																						| 2 | WANG R X ,  GAO J M ,  LI S Q , et al.  Condition-based dynamic supportability mechanism for the performance quality of large-scale electromechanical systems[J]. IEEE Access, 2020, 8, 117036- 117050. doi: 10.1109/ACCESS.2020.3004736
 | 
																													
																						| 3 | FERNANDEZ-VILLACANAS M M A. Strategies and organizational changes for the logistics sustainability of military aircraft: towards the digital transformation of in-service support[C]// Proc. of the Developments and Advances in Defense and Security, 2020: 419-429. | 
																													
																						| 4 | LAI C M ,  TSENG M L .  Designing a reliable hierarchical military logistic network using an improved simplified swarm optimization[J]. Computers & Industrial Engineering, 2022, 169, 108153. | 
																													
																						| 5 | DEMERTZIS K, KIKIRAS P, ILIADIS L. A blockchained secure and integrity-preserved architecture for military logistics ope- rations[C]//Proc. of the Engineering Applications of Neural Networks: the 23rd International Conference, 2022. | 
																													
																						| 6 | 杨英杰, 于永利, 张柳, 等.  装备维修保障仿真系统灵敏度分析与参数优化[J]. 系统工程与电子技术, 2016, 38 (3): 575- 581. | 
																													
																						|  | YANG Y J ,  YU Y L ,  ZHANG L , et al.  Sensitivity analysis and parameters optimization for equipment maintenance support simu- lation system[J]. System Engineering and Electronics, 2016, 38 (3): 575- 581. | 
																													
																						| 7 | OWENS A, DE-WECK O, STROMGREN C, et al. Supportability challenges, metrics, and key decisions for future human spaceflight[C]//Proc. of the AIAA SPACE and Astronautics Forum and Exposition, 2017. | 
																													
																						| 8 | 王宏, 兑兴亮, 赵英俊.  地空导弹战时装备保障仿真系统设计与实现[J]. 计算机仿真, 2020, 37 (2): 78- 81. doi: 10.3969/j.issn.1006-9348.2020.02.016
 | 
																													
																						|  | WANG H ,  DUI X L ,  ZHAO Y J .  Design and implementation of equipment support simulation system on ground to air missile in wartime[J]. Computer Simulation, 2020, 37 (2): 78- 81. doi: 10.3969/j.issn.1006-9348.2020.02.016
 | 
																													
																						| 9 | 魏天宇, 张孝虎, 雷宇, 等.  基于Petri网的战时空空导弹保障建模[J]. 指挥控制与仿真, 2019, 41 (2): 37- 41. doi: 10.3969/j.issn.1673-3819.2019.02.007
 | 
																													
																						|  | WEI T Y ,  ZHANG X H ,  LEI Y , et al.  Wartime air-to-air missile support model based on petri net[J]. Command Control and Simulation, 2019, 41 (2): 37- 41. doi: 10.3969/j.issn.1673-3819.2019.02.007
 | 
																													
																						| 10 | 魏圣军, 吴法文, 张琳, 等.  基于系统动力学的装备维修级别决策研究[J]. 兵器装备工程学报, 2020, 41 (3): 51- 56. doi: 10.11809/bqzbgcxb2020.03.010
 | 
																													
																						|  | WEI S J ,  WU F W ,  ZHANG L , et al.  Equipment maintenance level decision-making based on system dynamics[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (3): 51- 56. doi: 10.11809/bqzbgcxb2020.03.010
 | 
																													
																						| 11 | 米巧丽, 卢明章, 李亚杰, 等.  基于着色算子的导弹综合保障仿真系统设计[J]. 战术导弹技术, 2022, (1): 21- 28. | 
																													
																						|  | MI Q L ,  LU M Z ,  LI Y J , et al.  Design of a simulation system for missile integration support based on colored operators[J]. Tactical Missile Technology, 2022, (1): 21- 28. | 
																													
																						| 12 | KENEALLY S K ,  ROBBINS M J ,  LUNDAY B J .  A Markov decision process model for the optimal dispatch of military medical evacuation assets[J]. Health Care Management Science, 2016, 9, 111- 129. | 
																													
																						| 13 | ABDULLAH A ,  ASHUTOSH T .  A novel approach for model- ling complex maintenance systems using discrete event simu-lation[J]. Reliability Engineering & System Safety, 2016, 154, 160- 170. | 
																													
																						| 14 | 郭璐, 刘晓东.  多扰动下面向设计的导弹装备保障系统仿真[J]. 西北工业大学学报, 2022, 40 (5): 1116- 1124. doi: 10.3969/j.issn.1000-2758.2022.05.020
 | 
																													
																						|  | GUO L ,  LIU X D .  Simulation on design-oriented missile equipment support system under multiple disturbances[J]. Journal of Northern Polytechnical University, 2022, 40 (5): 1116- 1124. doi: 10.3969/j.issn.1000-2758.2022.05.020
 | 
																													
																						| 15 | ADRIAN S H ,  JAVIER F ,  PATRICK H , et al.  Agent-based simulation for horizontal cooperation in logistics and transportation: from the individual to the grand coalition[J]. Simulation Modelling Practice and Theory, 2018, 85, 47- 59. doi: 10.1016/j.simpat.2018.04.002
 | 
																													
																						| 16 | GUO L ,  LIU X D .  Mission-oriented missile equipment support system modeling: considering the failure and health state[J]. Mathematical Problems in Engineering, 2022, 40 (5): 1116- 1124. | 
																													
																						| 17 | 雷建长, 王小辉, 郑小鹏.  地地导弹武器装备发展脉络与趋势[J]. 战术导弹技术, 2020, (4): 21- 28. | 
																													
																						|  | LEI J C ,  WANG X H ,  ZHENG X P .  The development context and future trend of surface-to-surface missiles[J]. Tactical Missile Technology, 2020, (4): 21- 28. | 
																													
																						| 18 | 刘永才.  新形势下武器装备发展思考[J]. 战术导弹技术, 2020, 1- 12. | 
																													
																						|  | LIU Y C .  Thoughts on the development of weapons and equipment under the new situation[J]. Tactical Missile Technology, 2020, 1- 12. | 
																													
																						| 19 | SOUZA R L C ,  GHASEMI A ,  SAIF A , et al.  Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance[J]. Computers & Industrial Engineering, 2022, 168, 108130. | 
																													
																						| 20 | WANG G G ,  GAO D ,  PEDRYCZ W .  Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive diffe-rential evolution algorithm[J]. IEEE Trans.on Industrial Infor- matics, 2022, 18 (12): 8519- 8528. doi: 10.1109/TII.2022.3165636
 | 
																													
																						| 21 | 尹丽丽, 寇力, 范文慧.  基于多Agent的装备保障体系分布式建模与仿真方法[J]. 系统仿真学报, 2017, 29 (12): 3185- 3194. | 
																													
																						|  | YIN L L ,  KOU L ,  FAN W H .  Distributed modeling and simulation method of equipment support system based on multi-agent[J]. Journal of System Simulation, 2017, 29 (12): 3185- 3194. | 
																													
																						| 22 | 寇力, 范文慧, 宋爽, 等.  基于多智能体的装备保障体系建模与仿真[J]. 中国科学: 信息科学, 2018, 48 (7): 794- 809. | 
																													
																						|  | KOU L ,  FAN W H ,  SONG S , et al.  Modeling and simulation method of equipment support system based on multiple agents[J]. SCIENTIA SINICA Informationis, 2018, 48 (7): 794- 809. | 
																													
																						| 23 | 邢彪, 曹军海, 宋太亮, 等.  基于Agent的维修保障仿真系统设计与实现[J]. 系统仿真学报, 2017, 29 (1): 129- 135. | 
																													
																						|  | XING B ,  CAO J H ,  SONG T L , et al.  Design and implementation for maintenance support simulation system based on agent[J]. Journal of System Simulation, 2017, 29 (1): 129- 135. | 
																													
																						| 24 | ZHU H H ,  ZHANG Y ,  LIU C C , et al.  An adaptive reinforcement learning-based scheduling approach with combination rules for mixed-line job shop production[J]. Mathematical Problems in Engineering, 2022, 2022, 1672166. | 
																													
																						| 25 | ZHANG F Q ,  BAI J Y ,  YANG D Y , et al.  Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision[J]. Scientific Reports, 2022, 12 (1): 1546. | 
																													
																						| 26 | ZHANG Y ,  ZHU H H ,  TANG D B , et al.  Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78, 102412. | 
																													
																						| 27 | 李小涛, 彭翀.  基于混合多智能体遗传算法的作业车间调度问题研究[J]. 北京航空航天大学学报, 2017, 43 (2): 410- 416. | 
																													
																						|  | LI X T ,  PENG C .  Hybrid multiagent genetic algorithm for job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (2): 410- 416. | 
																													
																						| 28 | ZHOU Z ,  LI F M ,  ZHU H X , et al.  An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments[J]. Neural Computing and Applications, 2020, 32, 1531- 1541. | 
																													
																						| 29 | ZOUHRI W ,  HOMRI L ,  DANTAN J Y .  Handling the impact of feature uncertainties on SVM: a robust approach based on Sobol sensitivity analysis[J]. Expert Systems with Applications, 2022, 189, 115691. | 
																													
																						| 30 | BALLESTER-RIPOLL R ,  LEONELLI M .  Computing Sobol indices in probabilistic graphical models[J]. Reliability Engineering & System Safety, 2022, 225, 108573. |