1 |
ZHOU J L , WU X J , LYU Y Z , et al. Recent progress on the study of multi-vehicle coordination in cooperative attack and defense: an overview[J]. Asian Journal of Control, 2022, 24 (2): 794- 809.
doi: 10.1002/asjc.2685
|
2 |
温广辉, 周佳玲, 吕跃祖, 等. 多导弹协同作战中的分布式协调控制问题[J]. 指挥与控制学报, 2021, 7 (2): 137- 145.
doi: 10.3969/j.issn.2096-0204.2021.02.0137
|
|
WEN G H , ZHOU J L , LYU Y Z , et al. Distributed coordination control in multi-missile cooperative tasks[J]. Journal of Command and Control, 2021, 7 (2): 137- 145.
doi: 10.3969/j.issn.2096-0204.2021.02.0137
|
3 |
肖增博, 雷虎民, 夏训辉. 多导弹协同作战关键技术研究与展望[J]. 飞航导弹, 2008, (6): 24-26, 50.
|
|
XIAO Z B , LEI H M , XIA X H . Research and prospect on key technologies of multi-missile cooperative operation[J]. Winged Missiles Journal, 2008, (6): 24-26, 50.
|
4 |
槐泽鹏, 梁雪超, 王洪波, 等. 多弹协同及其智能化发展研究[J]. 战术导弹技术, 2019, (5): 77- 85.
|
|
HUAI Z P , LIANG X C , WANG H B , et al. Research on multi-missile collaborative and its intelligence development[J]. Tactical Missile Technology, 2019, (5): 77- 85.
|
5 |
杨斌. 空中分布式作战概念及关键技术分析[J]. 电讯技术, 2022, 62 (6): 826- 835.
doi: 10.3969/j.issn.1001-893x.2022.06.021
|
|
YANG B . Concepts and key technology analysis for air distributed operations[J]. Telecommunication Engineering, 2022, 62 (6): 826- 835.
doi: 10.3969/j.issn.1001-893x.2022.06.021
|
6 |
宋琛, 张蓬蓬. 分布式协同对未来制空作战的影响[J]. 飞航导弹, 2019, (11): 8- 11.
|
|
SONG C , ZHANG P P . Influence of distributed cooperation on future air defense operations[J]. Aerodynamic Missile Journal, 2019, (11): 8- 11.
|
7 |
曾家有, 谢宇鹏. 分布式反舰作战特点及装备发展分析[J]. 战术导弹技术, 2020, (4): 183- 188.
|
|
ZENG J Y , XIE Y P . Characteristics and equipment development on distributed anti-ship combat[J]. Tactical Missile Technology, 2020, (4): 183- 188.
|
8 |
朱志刚, 周凤岐. BTT导弹滚动通道变结构最终滑态控制系统设计[J]. 西北工业大学学报, 1995, (2): 292- 297.
|
|
ZHU Z G , ZHOU F Q . On design of variable structure terminal sliding mode control system for roll channel of BTT missile[J]. Journal of Northwestern Polytechnical University, 1995, (2): 292- 297.
|
9 |
段广仁, 周净扬. BTT导弹滚动通道自动驾驶仪设计[J]. 黑龙江大学自然科学学报, 2005, 22 (5): 561-565, 569.
doi: 10.3969/j.issn.1001-7011.2005.05.001
|
|
DUAN G R , ZHOU J Y . Autopilot design of roll channel for BTT missiles[J]. Journal of Natural Science of Heilongjiang University, 2005, 22 (5): 561-565, 569.
doi: 10.3969/j.issn.1001-7011.2005.05.001
|
10 |
汤柏涛, 董斌, 于云峰. BTT导弹滚转通道模型参考变结构自动驾驶仪设计[J]. 计算机测量与控制, 2011, 19 (1): 105- 107.
|
|
TANG B T , DONG B , YU Y F . Autopilot design for BTT missile based on model reference variable structure control[J]. Computer Measurement & Control, 2011, 19 (1): 105- 107.
|
11 |
LI S , YANG J . Robust autopilot design for bank-to-turn missiles using disturbance observers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (1): 558- 579.
doi: 10.1109/TAES.2013.6404120
|
12 |
XU X Y, CUI X X, YU W B, et al. Design of missile roll autopilot based on linear extended state observer[C]//Proc. of the IEEE 34th Chinese Control and Decision Conference, 2022: 418-421.
|
13 |
于秀萍, 官英双. 基于H∞控制理论的BTT导弹自动驾驶仪设计[J]. 系统工程与电子技术, 2008, 30 (5): 905- 908.
doi: 10.3321/j.issn:1001-506X.2008.05.032
|
|
YU X P , GUAN Y S . Design of autopilot for BTT missile based on H∞ control theory[J]. Systems Engineering and Electronics, 2008, 30 (5): 905- 908.
doi: 10.3321/j.issn:1001-506X.2008.05.032
|
14 |
DING X M , HU Y P , JIA R L , et al. A novel disturbance rejection control of roll channel for small air-to-surface missiles[J]. Applied Sciences, 2023, 13 (1): 389.
|
15 |
都海波, 李世华. 多BTT导弹滚动通道的有限时间姿态协调控制[C]//IEEE第三十一届中国控制会议, 2012: 445-450.
|
|
DU H B, LI S H. Finite-time attitude cooperative control for roll channels of multiple BTT missiles[C]//Proc. of the IEEE 31st Chinese Control Conference, 2012: 445-450.
|
16 |
都海波, 李世华, 何怡刚, 等. 多枚倾斜转弯导弹的滚转通道之分布式有限时间姿态协调控制[J]. 控制理论与应用, 2013, 30 (8): 956- 963.
|
|
DU H B , LI S H , HE Y G , et al. Distributed finite-time attitude cooperative control for roll channels of multiple bank-to-turn missiles[J]. Control Theory & Applications, 2013, 30 (8): 956- 963.
|
17 |
POLYAKOV A . Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans.on Automatic Control, 2012, 57 (8): 2106- 2110.
doi: 10.1109/TAC.2011.2179869
|
18 |
董泽洪, 李颖晖, 吕茂隆, 等. 考虑输入受限的高超声速飞行器非奇异固定时间自适应切换控制[J]. 系统工程与电子技术, 2023, 45 (5): 1476- 1488.
|
|
DONG Z H , LI Y H , LYU M L , et al. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints[J]. Systems Engineering and Electro-nics, 2023, 45 (5): 1476- 1488.
|
19 |
ZHOU N , CHENG X D , SUN Z Q , et al. Fixed-time cooperative behavioral control for networked autonomous agents with second-order nonlinear dynamics[J]. IEEE Trans.on Cyberne-tics, 2022, 52 (9): 9504- 9518.
doi: 10.1109/TCYB.2021.3057219
|
20 |
XIN S, SHI M, LI W, et al. Distributed fixed-time bipartite containment control of multi-agent systems with unknown disturbances[C]//Proc. of the 7th International Conference on Control, Robotics and Cybernetics, 2022: 69-73.
|
21 |
HU D , ZHANG S , ZOU A M . Velocity-free fixed-time attitude cooperative control for spacecraft formations under directed graphs[J]. International Journal of Robust and Nonlinear Control, 2021, 31 (8): 2905- 2927.
doi: 10.1002/rnc.5427
|
22 |
HONG H F , WANG H . Fixed-time formation control for se-cond-order disturbed multi-agent systems under directed graph[J]. Symmetry, 2021, 13 (12): 2295.
doi: 10.3390/sym13122295
|
23 |
白嘉琪, 王彦恺, 邢昊. 无人艇与四旋翼无人机固定时间异构编队控制[J]. 系统工程与电子技术, 2023, 45 (4): 1152- 1163.
|
|
BAI J Q , WANG Y K , XING H . Fixed-time heterogeneous formation control of unmanned boats and quadrotor unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2023, 45 (4): 1152- 1163.
|
24 |
符小卫, 陈子浩. 多无人机协同探测快速目标的控制方法设计[J]. 系统工程与电子技术, 2021, 43 (11): 3295- 3304.
doi: 10.12305/j.issn.1001-506X.2021.11.30
|
|
FU X W , CHEN Z H . Design of control method for multi-UAV cooperative detection of fast target[J]. Systems Engineering and Electronics, 2021, 43 (11): 3295- 3304.
doi: 10.12305/j.issn.1001-506X.2021.11.30
|
25 |
LIU L , LIU Y J , TONG S . Fuzzy-based multierror constraint control for switched nonlinear systems and its applications[J]. IEEE Trans.on Fuzzy Systems, 2019, 27 (8): 1519- 1531.
|
26 |
LI D P , LIU Y J , TONG S C , et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J]. IEEE Trans.on Cybernetics, 2019, 49 (4): 1249- 1258.
|
27 |
梁乐成, 赵斌, 周军, 等. 部分约束下空中目标拦截制导控制一体化方法[J]. 系统工程与电子技术, 2023, 45 (4): 1134- 1143.
|
|
LIANG L C , ZHAO B , ZHOU J , et al. Integrated guidance and control method against aerial target with partial constraints[J]. Systems Engineering and Electronics, 2023, 45 (4): 1134- 1143.
|
28 |
CHEN A Q , TANG L , LIU Y J , et al. Adaptive control for switched uncertain nonlinear systems with time-varying output constraint and input saturation[J]. International Journal of Adaptive Control and Signal Processing, 2019, 33 (9): 1344- 1358.
|
29 |
WANG C X , WU Y Q . Finite-time tracking control for strict-feedback nonlinear systems with full state constraints[J]. International Journal of Control, 2019, 92 (6): 1426- 1433.
|
30 |
ZHAO W , LIU Y J , LIU L . Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints[J]. IEEE-CAA Journal of Automatica Sinica, 2021, 8 (3): 617- 627.
|
31 |
YUAN F , LIU Y J , LIU L , et al. Adaptive neural consensus tracking control for nonlinear multiagent systems using integral barrier Lyapunov functionals[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34 (8): 4544- 4554.
|
32 |
QIAN C J , LIN W . A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Trans.on Automatic Control, 2001, 46 (7): 1061- 1079.
|
33 |
HARDY G H , LITTLEWOOD J E , POLYA G . Inequalities[M]. Cambridge: Cambridge University Press, 1952.
|
34 |
ZOU A M , DE RUITER A H J , KUMAR K D . Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67, 46- 53.
|
35 |
ZOU A M , KUMAR K D , DE RUITER A H J . Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113, 108792.
|
36 |
HONG Y G , HU J P , GAO L X . Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica, 2006, 42 (7): 1177- 1182.
|
37 |
PENG T K. Adaptive control of uncertain constrained nonlinear systems[D]. Singapore: National University of Singapore, 2008.
|