系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3192-3206.doi: 10.12305/j.issn.1001-506X.2023.10.24
• 系统工程 • 上一篇
崔凯凯1,2, 崔荣伟1, 韩维1, 郭放1, 王毓麟1, 刘洁3,*
收稿日期:
2021-10-28
出版日期:
2023-09-25
发布日期:
2023-10-11
通讯作者:
刘洁
作者简介:
崔凯凯(1991—), 男, 工程师, 博士, 主要研究方向为舰载航空保障、飞行器动力学与控制Kaikai CUI1,2, Rongwei CUI1, Wei HAN1, Fang GUO1, Yulin WANG1, Jie LIU3,*
Received:
2021-10-28
Online:
2023-09-25
Published:
2023-10-11
Contact:
Jie LIU
摘要:
针对舰载机机群着舰回收排序调度问题,首先对航母甲板环境以及舰载机的返航回收进场模式进行了分析, 建立了基于加权等待时间的回收排序评价指标模型, 并根据舰载机回收着舰排序调度问题中的各种约束, 建立了考虑空中加油条件的舰载机回收排序调度问题模型。然后, 根据所建立的回收调度排序模型以及超启发式算法的思想, 设计了一种带强制着舰规则的遗传规划(genetic programming with mandatory landing rules, MGP)算法, 用于对着舰回收排序调度问题进行求解。进一步, 借助仿真算例验证了所建回收排序调度模型和MGP算法的有效性, 并通过与遗传算法、纯启发式算法以及普通的遗传规划算法进行对比, 验证了MGP算法的优势。最后, 基于算例仿真结果, 分析了逃逸复飞对着舰回收方案的影响。
中图分类号:
崔凯凯, 崔荣伟, 韩维, 郭放, 王毓麟, 刘洁. 基于MGP算法的舰载机回收排序调度技术[J]. 系统工程与电子技术, 2023, 45(10): 3192-3206.
Kaikai CUI, Rongwei CUI, Wei HAN, Fang GUO, Yulin WANG, Jie LIU. Carrier aircraft recovery sequencing scheduling technology based on MGP algorithm[J]. Systems Engineering and Electronics, 2023, 45(10): 3192-3206.
表2
待回收机群的初始状态信息"
舰载机编号 | 舰载机类型 | 剩余油量/L | 完整度/% | 任务优先级 |
1 | M | 4 800 | 100 | 3 |
2 | M | 4 200 | 100 | 2 |
3 | L | 6 000 | 90 | 3 |
4 | M | 4 200 | 100 | 3 |
5 | S | 5 700 | 100 | 3 |
6 | S | 5 400 | 100 | 4 |
7 | M | 3 900 | 80 | 2 |
8 | L | 5 400 | 100 | 3 |
9 | M | 2 700 | 100 | 4 |
10 | L | 6 600 | 90 | 2 |
11 | L | 6 000 | 100 | 3 |
12 | L | 5 700 | 100 | 4 |
13 | M | 4 500 | 100 | 1 |
14 | S | 5 400 | 100 | 3 |
15 | M | 4 800 | 100 | 3 |
16 | L | 4 200 | 100 | 2 |
17 | M | 5 100 | 100 | 2 |
18 | M | 4 200 | 80 | 4 |
19 | S | 5 700 | 100 | 5 |
20 | M | 4 800 | 100 | 3 |
21 | S | 6 600 | 100 | 2 |
22 | L | 5 400 | 100 | 1 |
23 | S | 4 500 | 100 | 4 |
24 | M | 4 800 | 100 | 3 |
25 | S | 6 000 | 100 | 2 |
26 | L | 5 100 | 90 | 2 |
27 | M | 4 500 | 100 | 5 |
28 | S | 5 400 | 60 | 4 |
29 | M | 5 700 | 100 | 3 |
30 | S | 4 800 | 90 | 3 |
虚拟机 | N | 4 800 | 100 | 3 |
表4
着舰排序方案结果"
舰载机编号 | 着舰次序 | 着舰等待时间/s | 安全时间裕度/s | 着舰剩余油量/L |
1 | 21 | 2 442 | 1 849 | 2 602 |
2 | 11 | 1 458 | 2 167 | 2 888 |
3 | 7 | 1 032 | 2 926 | 4 762 |
4 | 20 | 2 353 | 1 272 | 2 082 |
5 | 27 | 3 017 | 5 441 | 3 890 |
6 | 29 | 3 205 | 4 753 | 3 477 |
7 | 2 | 515 | 2 776 | 3 437 |
8 | 18 | 2 105 | 1 353 | 2 874 |
9 | 16 | 1 903 | 55 | 987 |
10 | 5 | 806 | 3 652 | 5 633 |
11 | 17 | 1 992 | 1 966 | 3 610 |
12 | 19 | 2 218 | 1 490 | 3 038 |
13 | 9 | 1 280 | 2 678 | 3 348 |
14 | 26 | 2 923 | 5 035 | 3 646 |
15 | 15 | 1 814 | 2 477 | 3 167 |
16 | 8 | 1 145 | 1 313 | 2 826 |
17 | 10 | 1 369 | 3 256 | 3 868 |
18 | 3 | 604 | 3 021 | 3 656 |
19 | 30 | 3 299 | 5 159 | 3 721 |
20 | 14 | 1 725 | 2 566 | 3 248 |
21 | 25 | 2 829 | 7 129 | 4 903 |
22 | 6 | 919 | 2 539 | 4 297 |
23 | 28 | 3 111 | 3 347 | 2 633 |
24 | 13 | 1 636 | 2 655 | 3 328 |
25 | 24 | 2 735 | 6 223 | 4 359 |
26 | 4 | 693 | 2 515 | 4 268 |
27 | 22 | 2 531 | 1 427 | 2 222 |
28 | 1 | 432 | 7 526 | 5 141 |
29 | 12 | 1 547 | 3 744 | 4 308 |
30 | 23 | 2 641 | 4 317 | 3 215 |
表5
不同机群规模条件下的算法优化结果统计结果"
舰载机数量 | 调度方案求解算法 | 评价指标函数值/s | 任务完成时间/s | 空中加油架次 | 单次迭代计算耗时/s |
15 | MGP | 6 154.9 | 1 851.2 | 0 | 0.106 0 |
GP | 6 163.2 | 1 853.5 | 0 | 0.099 1 | |
GA | 6 178.8 | 1 857.5 | 0 | 0.378 8 | |
LFFS | 6 575.8 | 1 867.9 | 0 | 0.002 4 | |
HPFS | 6 805.7 | 1 900.0 | 0.033 3 | 0.002 6 | |
25 | MGP | 14 362.0 | 2 829.1 | 0 | 0.145 5 |
GP | 14 436.8 | 2 827.9 | 0 | 0.127 3 | |
GA | 14 640.5 | 2 861.7 | 0 | 0.300 9 | |
LFFS | 15 364.1 | 2 858.9 | 0 | 0.001 7 | |
HPFS | 17 597.6 | 2 952.4 | 0.833 3 | 0.001 8 | |
35 | MGP | 25 866.0 | 3 824.9 | 0 | 0.189 2 |
GP | 25 975.1 | 3 822.6 | 0 | 0.180 1 | |
GA | 27 202.1 | 3 911.6 | 0 | 0.309 2 | |
LFFS | 27 568.9 | 3 846.0 | 0 | 0.001 7 | |
HPFS | 32 476.9 | 3 982.9 | 1.400 0 | 0.001 8 | |
45 | MGP | 40 798.2 | 4 790.9 | 0 | 0.297 8 |
GP | 41 148.7 | 4 793.2 | 0 | 0.269 8 | |
GA | 48 032.6 | 4 874.0 | 1.066 7 | 0.350 9 | |
LFFS | 43 298.3 | 4 807.1 | 0 | 0.001 8 | |
HPFS | 69 623.3 | 4 993.7 | 6.466 7 | 0.002 0 |
表6
复飞逃逸对着舰排序方案的影响"
再次着舰机编号 | 任务完成时间/s | 评价指标函数值/s | 再次着舰机编号 | 任务完成时间/s | 评价指标函数值/s | |
25 | 3 393.0 | 19 729.0 | {10, 22} | 3 525.0 | 21 836.0 | |
5 | 3 434.0 | 19 666.0 | {22, 12} | 3 593.0 | 21 211.0 | |
19 | 3 716.0 | 19 597.0 | {17, 30} | 3 482.0 | 20 441.0 | |
20 | 3 410.0 | 20 142.0 | {7, 21} | 3 504.0 | 21 040.0 | |
28 | 3 439.0 | 21 153.0 | {11, 23} | 3 663.0 | 20 192.0 | |
9 | 3 388.0 | 20 019.0 | {20, 8} | 3 545.0 | 20 677.0 | |
26 | 3 412.0 | 20 781.0 | {20, 4} | 3 509.0 | 20 460.0 | |
21 | 3 393.0 | 19 694.0 | {2, 25} | 3 482.0 | 20 363.0 | |
29 | 3 388.0 | 20 099.0 | {8, 19} | 3 865.0 | 20 098.0 | |
18 | 3 410.0 | 20 776.0 | {12, 14} | 3 552.0 | 20 097.0 | |
均值 | 3 438.3 | 20 165.6 | 均值 | 3 572.0 | 20 641.4 |
1 | ZHANG J F , ZHAO P . A new meta heuristic approach for aircraft landing problem[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37 (2): 197- 208. |
2 |
ANDREEVA-MORI A , SUZUKI S , ITOH E . Rule derivation for arrival aircraft sequencing[J]. Aerospace Science and Technology, 2013, 30 (1): 200- 209.
doi: 10.1016/j.ast.2013.08.004 |
3 | 王义平. 基于AF-PSO的飞机着陆排序算法及其FPGA实现[D]. 南京: 南京航空航天大学, 2018. |
WANG Y P. Aircraft landing sorting algorithm based on AF- PSO and FPGA implementation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
4 |
CAO Y , RATHINAM S , SUN D F . Greedy heuristic aided mixed integer linear programming approach for arrival scheduling[J]. Journal of Aerospace Information Systems, 2013, 10 (7): 323- 336.
doi: 10.2514/1.I010030 |
5 |
ZHANG J F , ZHAO P , ZHANG Y , et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82, 101734.
doi: 10.1016/j.jairtraman.2019.101734 |
6 | 张军峰, 郑志祥, 葛腾腾. 基于复合分派规则的进场航班排序方法[J]. 交通运输工程学报, 2017, 17 (3): 141- 150. |
ZHANG J F , ZHENG Z X , GE T T . Sequencing approach of arrival aircrafts based on composite dispatching rules[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 141- 150. | |
7 |
SHI W , JIANG S , LIANG X . A heuristic algorithm for solving the aircraft landing scheduling problem with a landing sequence division[J]. IEICE Trans.on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102-A (8): 966- 973.
doi: 10.1587/transfun.E102.A.966 |
8 | 吴宇. 舰载机机队起降任务规划方法研究[D]. 北京: 北京航空航天大学, 2016. |
WU Y. Mission planning for a team of aircraft launching and landing on carrier[D]. Beijing: Beihang University, 2016. | |
9 |
BEASLEY E J , KRISHNAMOORTHY M , SHARAIHA M Y , et al. Scheduling aircraft landings-the static case[J]. Transportation Science, 2000, 34 (2): 180- 197.
doi: 10.1287/trsc.34.2.180.12302 |
10 | 夏国清, 陈红召, 米青超. 舰载机回收作业的反馈排队模型[J]. 火力与指挥控制, 2013, 38 (5): 168-170, 173. |
XIA G Q , CHEN H Z , MI Q C . A sequencing model with feedback for embarked aircraft's recovery[J]. Fire Control & Command Control, 2013, 38 (5): 168-170, 173. | |
11 | 林华, 占明锋, 周丰. 舰载机回收任务的优化调度算法及仿真[J]. 海军工程大学学报, 2008, 20 (1): 54- 58. |
LIN H , ZHAN M F , ZHOU F . optimization schedule algorithm and simulation to recycle planes on carrier[J]. Journal of Naval University of Engineering, 2008, 20 (1): 54- 58. | |
12 | 刘玉杰, 万兵, 苏析超, 等. 基于IABC算法的舰载机着舰调度[J]. 控制与决策, 2022, 37 (7): 1810- 1818. |
LIU Y J , WAN B , SU X C , et al. Shipborne aircraft landing scheduling based on IABC algorithm[J]. Control and Decision, 2022, 37 (7): 1810- 1818. | |
13 | 张龙杰, 何凡, 刘青松. 考虑逃逸复飞队列饱和度的舰载机回收策略[J]. 火力与指挥控制, 2017, 42 (8): 15-18, 23. |
ZHANG L J , HE F , LIU Q S . Recover strategy of carrier aircraft based on saturation of waved off and bolter queue[J]. Fire Control & Command Control, 2017, 42 (8): 15-18, 23. | |
14 | WU Y , SUN L G , QU X J . A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54 (7): 72- 87. |
15 | 刘爱东, 桂周. 基于模拟退火的PSO算法在舰载机回收中的应用[J]. 指挥与控制仿真, 2014, 36 (5): 59- 62. |
LIU A D , GUI Z . Application of particle swarm algorithm based on simulated annealing for carrier aircraft's recovery[J]. Command Control & Simulation, 2014, 36 (5): 59- 62. | |
16 | 万兵, 韩维, 梁勇, 等. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43 (10): 2918- 2930. |
WAN B , HAN W , LIANG Y , et al. Research on optimization of carrier-based aircraft fleet recovery scheduling based on index function[J]. Systems Engineering and Electronic Technology, 2021, 43 (10): 2918- 2930. | |
17 | 陈浩杰, 丁国富, 张剑, 等. 求解资源受限多项目调度的改进遗传规划算法[J]. 中国机械工程, 2021, 32 (10): 1213- 1221. |
CHEN H J , DING G F , ZHANG J , et al. Improved genetic programming algorithm for RCMPSP[J]. Chinese Mechanical Engineering, 2021, 32 (10): 1213- 1221. | |
18 | COWLING P, KENDALL G, SOUBEIGA E. A hyperheuristic approach to scheduling a sales summit[C]//Proc. of the International Conference on the Practice and Theory of Automated Timetabling, 2000. |
19 | 罗敏. 基于超启发式算法的多模具限制柔性作业车间问题研究[D]. 杭州: 浙江大学, 2021. |
LUO M. Research on hyper-heuristic for molds-constrained flexible job shop problem[D]. Hangzhou: Zhejiang University, 2021. | |
20 | CUI R W , HAN W , SU X C , et al. A multi-objective hyper heuristic framework for integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration[J]. Aerospace Science and Technology, 2020, 107, 106346. |
21 | 黄子钊, 庄子龙, 滕浩, 等. 自动化码头出口箱箱位分配优化超启发式算法[J]. 计算机集成制造系统, 2022, 28 (8): 2619- 2632. |
HUANG Z Z , ZHUANG Z L , TENG H , et al. optimization of outbound container space assignment in automated container terminals based on hyper-heuristic[J]. Computer Integrated Manufacturing Systems, 2022, 28 (8): 2619- 2632. | |
22 | OLGUN B , KOC C , ALTIPARMAK F . A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery[J]. Computers & Industrial Engineering, 2020, 153, 107010. |
23 | ABDOLREZA R K , MAHBOUBEH S . A hyper-heuristic selector algorithm for cloud computing scheduling based on workflow features[J]. Opsearch, 2021, 58 (4): 852- 868. |
24 | BRANKE J , NGUYEN S , PICKARDT C W , et al. Automated design of production scheduling heuristics: a review[J]. IEEE Trans.on Evolutionary Computation, 2016, 20 (1): 110- 124. |
25 | CHEN H J , DING G F , QIN S F , et al. A hyper-heuristic based ensemble genetic programming approach for stochastic resource constrained project scheduling problem[J]. Expert Systems with Applications, 2021, 167, 114174. |
26 | 张苏雨, 王艳, 纪志成. 基于超启发式遗传规划的动态车间调度方法[J]. 系统仿真学报, 2020, 32 (12): 2494- 2506. |
ZHANG S Y , WANG Y , JI Z C . Automatic discovery method of dynamic job shop dispatching rules based on hyper-heuristic genetic programming[J]. Journal of System Simulation, 2020, 32 (12): 2494- 2506. | |
27 | LIN J , ZHU L , GAO K Z . A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem[J]. Expert Systems with Applications, 2019, 140, 112915. |
28 | SHELVIN C , QUANG H , HEMANT S , et al. On the use of genetic programming to evolve priority rules for resource constrained project scheduling problems[J]. Information Sciences, 2018, 432, 146- 163. |
29 | SHELVIN C , HEMANT S , TAPABRATA R . Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions[J]. Swarm and Evolutionary Computation, 2019, 44, 897- 912. |
30 | JOE C T , NHU B H . Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems[J]. Computers & Industrial Engineering, 2008, 54 (3): 453- 473. |
31 | 杨一栋. 舰载飞机着舰引导与控制[M]. 北京: 国防工业出版社, 2007. |
YANG Y D . Guidance and control of carrier-based aircraft landing[M]. Beijing: National Defense Industry Press, 2007. |
[1] | 方伟, 梁静雯, 陆恒杨. 基于聚类锦标赛与父代匹配的遗传规划算法[J]. 系统工程与电子技术, 2023, 45(8): 2405-2414. |
[2] | 韩维, 刘子玄, 苏析超, 崔凯凯, 刘洁. 结合启发式与最优控制的舰载机甲板路径规划算法[J]. 系统工程与电子技术, 2023, 45(4): 1098-1110. |
[3] | 吕晓峰, 杨东泽, 马羚. 舰载机模块化弹药调度方案优化设计[J]. 系统工程与电子技术, 2023, 45(2): 465-471. |
[4] | 张勇, 李常久, 苏析超, 崔荣伟. 基于HTLBO算法的舰载机机群机库维修任务调度[J]. 系统工程与电子技术, 2022, 44(9): 2858-2868. |
[5] | 邓嘉宁, 吴宇, 许舒婷, 苟进展. 基于模糊贝叶斯-ANP舰载机出动回收综合评估[J]. 系统工程与电子技术, 2022, 44(11): 3423-3432. |
[6] | 韩维, 崔凯凯, 刘洁, 王昕炜, 张勇. 基于自校正MPC的舰载机着舰控制技术[J]. 系统工程与电子技术, 2022, 44(1): 250-261. |
[7] | 曾斌, 陈媛媛, 李厚朴. 考虑保障装备可用度的舰载机作业调度优化[J]. 系统工程与电子技术, 2021, 43(7): 1856-1865. |
[8] | 崔荣伟, 韩维, 苏析超, 王立国, 刘玉杰. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893. |
[9] | 万兵, 韩维, 梁勇, 郭放. 舰载机出动离场调度优化算法[J]. 系统工程与电子技术, 2021, 43(12): 3624-3634. |
[10] | 万兵, 韩维, 梁勇, 苏析超. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43(10): 2918-2930. |
[11] | 张易明, 艾剑良. 基于双目视觉的空中加油锥套定位与对接控制[J]. 系统工程与电子技术, 2021, 43(10): 2940-2953. |
[12] | 岳奎志, 赵建忠, 程亮亮, 郁大照. 舰载机着舰航线侧方计时建模与分析[J]. 系统工程与电子技术, 2020, 42(6): 1332-1337. |
[13] | 袁培龙, 韩维, 苏析超, 高少辉. 不确定环境下舰载机保障预反应式动态调度优化[J]. 系统工程与电子技术, 2019, 41(6): 1265-1277. |
[14] | 冯琦, 孙宁, 朱金冬, 高晓光. 基于遗传规划的炸弹弹道分组拟合模型[J]. 系统工程与电子技术, 2019, 41(4): 787-792. |
[15] | 吴文海, 汪节, 高丽, 张杨, 郭晓峰. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||