Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1264-1272.doi: 10.12305/j.issn.1001-506X.2024.04.15
• Systems Engineering • Previous Articles Next Articles
Zhe LIU1,2,3, Junfei MA4, Jiafeng CHEN4, Songhua MA1,2,3,*
Received:
2023-04-20
Online:
2024-03-25
Published:
2024-03-25
Contact:
Songhua MA
CLC Number:
Zhe LIU, Junfei MA, Jiafeng CHEN, Songhua MA. Carrier-based aircraft ammunition support scheduling optimization based on improved grey wolf optimizer algorithm[J]. Systems Engineering and Electronics, 2024, 46(4): 1264-1272.
Table 1
Variable table of transfer scheduling process related parameters"
参数变量 | 含义 |
P | 升降机数量 |
N | 运输车数量 |
Qn | 运输车装载容量 |
K | 目标工作点数量 |
k | 运输暂存目标工作点数量 |
qi | 目标工作点i所需要的容量 |
vm | 运输车最大运输速度 |
[sti, fti] | 时间窗要求的目标工作点i的开始、结束时间 |
U | 影响运输过程的相关因素集合 |
物体标号 | |
n(∈N) | 各运输车 |
(xi, yi) | 目标工作点i的位置坐标 |
目标工作点i和j之间的直线距离 | |
顺序要求参数 | |
路径参数 | |
到达参数 | |
等待时间 | |
tm | 第m组的总体等待时间 |
Table 2
Information table for each site (with 3 lifts and 16 target working sites)"
序号 | X相对坐标 | Y相对坐标 | 类型 |
01 | -63 | 319 | 升降机 |
02 | 7 | 140 | 升降机 |
03 | 7 | -206 | 升降机 |
1 | -77 | 113 | 运输点 |
2 | -95 | 77 | 运输点 |
3 | -91 | -30 | 运输点 |
4 | -87 | -83 | 运输点 |
5 | 0 | 243 | 运输点 |
6 | -47 | 369 | 运输点 |
7 | -78 | 370 | 运输点 |
8 | -40 | -351 | 运输点 |
9 | -45 | 94 | 装载点 |
10 | -55 | 52 | 装载点 |
11 | -64 | -42 | 装载点 |
12 | -70 | -95 | 装载点 |
13 | 28 | 243 | 装载点 |
14 | -56 | 438 | 装载点 |
15 | -85 | 406 | 装载点 |
16 | -30 | -368 | 装载点 |
Table 4
Information table for each target working site (with 3 lifts and 24 target working sites)"
序号 | X相对坐标 | Y相对坐标 | 类型 |
01 | -63 | 319 | 升降机 |
02 | 7 | 140 | 升降机 |
03 | 7 | -206 | 升降机 |
1 | -77 | 113 | 运输点 |
2 | -95 | 77 | 运输点 |
3 | -91 | -30 | 运输点 |
4 | -87 | -83 | 运输点 |
5 | 0 | 243 | 运输点 |
6 | -47 | 369 | 运输点 |
7 | -78 | 370 | 运输点 |
8 | -40 | -351 | 运输点 |
9 | -202 | 245 | 运输点 |
10 | -173 | 183 | 运输点 |
11 | -122 | 109 | 运输点 |
12 | -109 | -591 | 运输点 |
13 | -45 | 94 | 装载点 |
14 | -55 | 52 | 装载点 |
15 | -64 | -42 | 装载点 |
16 | -70 | -95 | 装载点 |
17 | 28 | 243 | 装载点 |
18 | -56 | 438 | 装载点 |
19 | -85 | 406 | 装载点 |
20 | -30 | -368 | 装载点 |
21 | -161 | 229 | 装载点 |
22 | -136 | 183 | 装载点 |
23 | -81 | 160 | 装载点 |
24 | -75 | -402 | 装载点 |
1 | JEWELL A, WIGGE M A, GAGNON C M K, et al. USS Nimitz and carrier airwing nine surge demonstration[R]. Alexandria: Center for Naval Analyses, 1998. |
2 | 张少辉, 刘舜, 李亚飞, 等. 航空母舰舰载机弹药保障作业调度优化算法[J]. 航空学报, 2023, 44 (20): 224- 241. |
ZHANG S H , LIU S , LI Y F , et al. Optimization algorithm for ammunition support operation scheduling of carrier-borne aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (20): 224- 241. | |
3 |
GUO F , HAN W , SU X C , et al. A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck[J]. Defence Technology, 2023, 22, 119- 134.
doi: 10.1016/j.dt.2021.12.006 |
4 |
SMITH W . Scheduling stored combat load retrieval[J]. Journal of Defense Analytics and Logistics, 2018, 2 (2): 80- 93.
doi: 10.1108/JDAL-07-2017-0012 |
5 | YU L F, ZHU C, LI W J, et al. Research on the aviation su-pport groups scheduling for multi-wave aircrafts based on the ammunition transportation[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 383-389. |
6 |
YUAN P L , HAN W , SU X C , et al. A dynamic scheduling method for carrier aircraft support operation under uncertain conditions based on rolling horizon strategy[J]. Applied Sciences, 2018, 8 (9): 1546.
doi: 10.3390/app8091546 |
7 |
RYAN J C , BANERJEE A G , CUMMINGS M L , et al. Comparing the performance of expert user heuristics and an integer liner program in aircraft carrier deck operations[J]. IEEE Trans.on Cybernetics, 2014, 44 (6): 761- 773.
doi: 10.1109/TCYB.2013.2271694 |
8 | FENG Q, BI W J, SUN B, et al. Dynamic scheduling of carrier aircraft based on improved ant colony algorithm under disruption and strong constraint[C]//Proc. of the 2nd International Conference on Reliability Systems Engineering, 2017. |
9 | SU X C , WU H , CUI R W , et al. Joint optimization method for carrier-based aircraft fleet sortie support personnel configuration and scheduling based on marginal-ABC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (11): 2056- 2068. |
10 |
LIU Y J , HAN W , SU X C , et al. Optimization of fixed aviation support resource station configuration for aircraft carrier based on aircraft dispatch mission scheduling[J]. Chinese Journal of Aeronautics, 2023, 36 (2): 127- 138.
doi: 10.1016/j.cja.2022.06.023 |
11 | 吕晓峰, 杨东泽, 马羚. 舰载机模块化弹药调度方案优化设计[J]. 系统工程与电子技术, 2023, 45 (2): 465- 471. |
LYU X F , YANG D Z , MA L . Optimal design of modular ammunition scheduling scheme for carrier-based aircraft[J]. Systems Engineering and Electronics, 2023, 45 (2): 465- 471. | |
12 | 刘翱, 刘克. 舰载机保障作业调度问题研究进展[J]. 系统工程理论与实践, 2017, 37 (1): 49- 60. |
LIU A , LIU K . Advanced in carrier-based aircraft deck operation scheduling[J]. Systems Engineering—Theory & Practice, 2017, 37 (1): 49- 60. | |
13 | RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling[EB/OL]. [2023-04-05]. https://doi.org/10.2514/6.2011-1516. |
14 |
LIU Y J , HAN W , SU X C , et al. Optimization of fixed aviation support resource station configuration for aircraft carrier based on aircraft dispatch mission scheduling[J]. Chinese Journal of Aeronautics, 2023, 36 (2): 127- 138.
doi: 10.1016/j.cja.2022.06.023 |
15 |
SUN Z W , GU X S . A novel hybrid estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with unrelated parallel machine[J]. Journal of Central South University, 2017, 24 (8): 1779- 1788.
doi: 10.1007/s11771-017-3586-6 |
16 |
WANG X W , LIU J , SU X C , et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3039- 3057.
doi: 10.1016/j.cja.2020.06.020 |
17 | YU L F , ZHU C , SHI J M , et al. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility[J]. Scientific Programming, 2017, 2017, 1- 15. |
18 | YE GQ, WANG X T, WANG H C, et al. Wartime consumption prediction of aircraft carrier airborne ammunition based on case-based reasoning[C]//Proc. of the 3rd International Conference on Advanced Information Science and System, 2022. |
19 |
MIRABI M , FATEMI G S M T , JOLAI F . Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26 (6): 564- 569.
doi: 10.1016/j.rcim.2010.06.023 |
20 |
ZHOU Y W , LIU J , ZHANG Y T , et al. A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 99, 77- 95.
doi: 10.1016/j.tre.2016.12.011 |
21 |
MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007 |
22 |
KONG X H , YAO Y H , YANG W Q , et al. Solving the flexible job shop scheduling problem using a discrete improved grey wolf optimization algorithm[J]. Machines, 2022, 10 (11): 1100.
doi: 10.3390/machines10111100 |
23 |
LI X Y , XIE J , MA Q J , et al. Improved gray wolf optimizer for distributed flexible job shop scheduling problem[J]. Science China Technological Sciences, 2022, 65 (9): 2105- 2115.
doi: 10.1007/s11431-022-2096-6 |
24 |
GU J C , JIANG T H , ZHU H Q , et al. Low-carbon job shop scheduling problem with discrete genetic-grey wolf optimization algorithm[J]. Journal of Advanced Manufacturing Systems, 2020, 19 (1): 1- 14.
doi: 10.1142/S0219686720500018 |
25 | HUANG G W , CAI Y , LIU J Q , et al. A novel hybrid discrete grey wolf optimizer algorithm for multi-UAV path planning[J]. Journal of Intelligent & Robotic Systems, 2021, 103 (3): 49- 66. |
26 | ZHENG X M, LI B, WANG L T, et al. Design of carrier ammunition scheduling scheme based on improved genetic algorithm[C]//Proc. of the 7th International Conference on Control Engineering and Artificial Intelligence, 2023: 162-167. |
27 | 黄戈文, 蔡延光, 戚远航, 等. 自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J]. 电子学报, 2019, 47 (12): 2602- 2610. |
HUANG G W , CAI Y G , QI Y H , et al. Adaptive genetic grey wolf optimizer algorithm for capacitated vehicle routing problem[J]. Acta Electronica Sinica, 2019, 47 (12): 2602- 2610. | |
28 | CUI R W , HAN W , SU X C , et al. A multi-objective hyper heuristic framework for integrated optimization of carrier-based aircraft flight deck operations scheduling and resource con-figuration[J]. Aerospace Science and Technology, 2020, 107, 1- 15. |
29 |
LIU M , LI G F . Ammunition scheduling method in airborne weapon depot based on improved genetic algorithm[J]. Journal of Physics: Conference Series, 2021, 1948 (1): 012050.
doi: 10.1088/1742-6596/1948/1/012050 |
30 | WANG L T, LI F Q, HUANG J R, et al. Optimization design of ammunition scheduling scheme for carrier-based aircraft based on improved DPSO algorithm[C]//Proc. of the 5th International Conference on Algorithms, Computing and Artificial Intelligence, 2022. |
31 | 刘哲, 陈佳峰, 马俊飞, 等. 舰载机弹药保障调度仿真系统[J/OL]. 系统仿真学报, 2023. https://doi.org/10.16182/j.issn.1004731x.joss.23-0393. |
LIU Z, CHEN J F, MA J F, et al. Simulation system for ca-rrier-based aircraft ammunition support scheduling[J/OL]. Journal of System Simulation, 2023. https://doi.org/10.16182/j.issn.1004731x.joss.23-0393. |
[1] | Xinyue YUAN, Hong CHEN, Lu DING, Lei SONG, Dan HUANG. ILS signal design based on modeling of safety for civil aircraft [J]. Systems Engineering and Electronics, 2024, 46(4): 1255-1263. |
[2] | Zhibing CHEN, Heng WU, Zhanhu LUO, Jianguo WANG. Research on the concept of operation for tropospheric airship based on MBSE [J]. Systems Engineering and Electronics, 2024, 46(3): 1004-1012. |
[3] | Peng WANG, Shuting YUE, Fan ZHANG, Lei DONG. Requirement consistency checking method for civil aircraft systems based on finite predicate tracing [J]. Systems Engineering and Electronics, 2024, 46(1): 205-218. |
[4] | Huayou WANG, Chengcheng ZHANG, Haihong XUE, Yifei LIU. Prediction of the number of accident symptoms in civil aviation based on "regression+Markov" combined model [J]. Systems Engineering and Electronics, 2023, 45(7): 2114-2120. |
[5] | Xinze LI, Wenya ZHOU, Kai LIU, Bo WANG. Screening method for the optimal landing site in the reachable area [J]. Systems Engineering and Electronics, 2023, 45(6): 1712-1721. |
[6] | Wei HAN, Zixuan LIU, Xichao SU, Kaikai CUI, Jie LIU. Deck path planning algorithm of carrier-based aircraft based on heuristic and optimal control [J]. Systems Engineering and Electronics, 2023, 45(4): 1098-1110. |
[7] | Junsen LI, Yining FANG, Yun'an ZHANG, Guanghan BAI, Junyong TAO. Multi-agent modeling and evaluation method for mission-oriented equipment support SoS [J]. Systems Engineering and Electronics, 2023, 45(1): 279-290. |
[8] | Wenqing SHI, Haifeng WANG, Haixin CHEN. Fighter-drone teaming system requirements elicitation and verification [J]. Systems Engineering and Electronics, 2023, 45(1): 108-118. |
[9] | Peng WANG, Zijing SUN, Fan ZHANG, Guosong XIAO. Reliability analysis model for phased-mission system considering probabilistic common cause failures [J]. Systems Engineering and Electronics, 2022, 44(12): 3887-3898. |
[10] | Yaohua LI, Yuan GAO. Safety analysis for civil aircraft system based on STPA-ANP model [J]. Systems Engineering and Electronics, 2022, 44(9): 2986-2994. |
[11] | Feiran GUO, Jianqiao YU, Bao SONG. Optimal design of missile types in missile equipment system based on assignment model [J]. Systems Engineering and Electronics, 2022, 44(3): 850-862. |
[12] | Qiucen FAN, Wenhao BI, An ZHANG, Wenhao WANG. MBSE modeling method of civil aircraft altitude control system [J]. Systems Engineering and Electronics, 2022, 44(1): 164-171. |
[13] | Yunong WANG, Wenhao BI, An ZHANG, Chao ZHAN. DoDAF-based civil aircraft MBSE development method [J]. Systems Engineering and Electronics, 2021, 43(12): 3579-3585. |
[14] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
[15] | Wenwen KANG, Haomin LI. Multi-view representation method of aircraft system architecture based on model [J]. Systems Engineering and Electronics, 2021, 43(11): 3266-3277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||