Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (12): 3887-3898.doi: 10.12305/j.issn.1001-506X.2022.12.35
• Reliability • Previous Articles
Peng WANG1,2, Zijing SUN2,*, Fan ZHANG1,2, Guosong XIAO1,2
Received:
2021-06-29
Online:
2022-11-14
Published:
2022-11-24
Contact:
Zijing SUN
CLC Number:
Peng WANG, Zijing SUN, Fan ZHANG, Guosong XIAO. Reliability analysis model for phased-mission system considering probabilistic common cause failures[J]. Systems Engineering and Electronics, 2022, 44(12): 3887-3898.
Table 2
Probability distribution of CCE nodes"
共因事件CCi间关系 | 共因空间CCEk的概率PCCEk |
共因事件间相互独立或集合{CCi}中不存在互斥事件(i∈S) | |
集合{CCi}中存在至少两共因事件互斥(i∈S) | PCCEk=0 |
所有共因事件中至少存在两共因事件CCi与CCj相关(i≠j) |
Table 3
Probability of a CCE containing three common cause events"
共因空间 | 发生概率 |
PCCE2=PCC2(1-PCC3|CC2) | |
PCCE4=0 | |
PCCE6=PCC2PCC3|CC2 | |
CCE7=CC1∩CC2∩CC3 | PCCE7=0 |
Table 4
Conditional failure probability of X"
元件X | P(X=0|CCEi=1) | P(X=1|CCEi=1) |
CCE0=1 | 1-qjx | qjx |
CCE1=1 | ||
CCE2=1 | ||
Table 5
Module table of attitude control system and propulsion system"
子系统 | 组件/元件 | 备注 | 运行阶段 |
姿轨控 | A: 姿轨控计算机 | Aa、Ab共2台, 冷备份 | T1、T2、T3、T4、T5 |
B: 陀螺 | Ba、Bb、Bc共3台, 3取2 | T1、T2、T4 | |
C: 数字太阳敏感器 | Ca、Cb、Cc、Cd共4台, Ca、Cb热备份 | Ca、Cb: T3Cc、Cd: T1、T2、T4 | |
D: 红外地球敏感器 | Da、Db共2台, 热备份 | T3 | |
E: 星敏感器 | Ea、Eb、Ec共3台, 3取2 | — | |
推进 | F: 发动机 | F一台 | T5 |
G: 推进器 | Ga、Gb共2台, 热备份 | T1、T2、T3、T4 |
Table 6
Probability table of CCE nodes"
CCE节点 | PCCEk |
CCE0 | |
CCE1 | |
CCE2 | PCCE2=(1-PCC41)PCC51(1-PCC52|CC51)=0.048 |
CCE3 | |
CCE4 | PCCE4=PCC41PCC51(1-PCC52|CC51)=0.112 |
CCE5 | |
CCE6 | PCCE6=(1-PCC41)PCC51PCC52|CC51=0.072 |
CCE7 | PCCE7=PCC41PCC51PCC52|CC51=0.168 |
Table 7
Conditional failure probability of related components in each sub common cause space"
相关元件 | 共因事件 | |||||||||||
CC41 | CC51 | CC52 | ||||||||||
A4 | C4 | G4 | B5 | D5 | F5 | A5 | C5 | G5 | ||||
CCE0 | 2.928E-6 | 7.32E-6 | 1.464E-6 | 6.954E-07 | 1.390 8E-06 | 9.804E-07 | 1.390 8E-06 | 3.477E-6 | 6.954E-07 | |||
CCE1 | 0.024 002 858 | 0.036 007 056 | 0.084 001 341 | 6.954E-07 | 1.390 8E-06 | 9.804E-07 | 1.390 8E-06 | 3.477E-6 | 6.954E-07 | |||
CCE2 | 2.928E-6 | 7.32E-6 | 1.464E-6 | 0.005 700 691 | 0.011 401 375 | 0.017 100 964 | 1.390 8E-06 | 3.477E-6 | 6.954E-07 | |||
CCE3 | 2.928E-6 | 7.32E-6 | 1.464E-6 | 6.954E-07 | 1.390 8E-06 | 9.804E-07 | 0.028 501 351 | 0.034 203 358 | 0.022 800 68 | |||
CCE4 | 0.024 002 858 | 0.036 007 056 | 0.084 001 341 | 0.005 700 691 | 0.011 401 375 | 0.017 100 964 | 1.390 8E-06 | 3.477E-6 | 6.954E-07 | |||
CCE5 | 0.024 002 858 | 0.036 007 056 | 0.084 001 341 | 6.954E-07 | 1.390 8E-06 | 9.804E-07 | 0.028 501 351 | 0.034 203 358 | 0.022 800 68 | |||
CCE6 | 2.928E-6 | 7.32E-6 | 1.464E-6 | 0.005 700 691 | 0.011 401 375 | 0.017 100 964 | 0.028 501 351 | 0.034 203 358 | 0.022 800 68 | |||
CCE7 | 0.024 002 858 | 0.036 007 056 | 0.084 001 341 | 0.005 700 691 | 0.011 401 375 | 0.017 100 964 | 0.028 501 351 | 0.034 203 358 | 0.022 800 68 |
Table 8
Method comparison"
方法 | 是否适用PCCF | 是否适用PMS | 是否适用系统动态行为 | 共因事件间关系 | 是否涉及模型转换 | 补充 |
基于BDD的显式模型[ | √ | √ | — | 相互独立 | 需进行系统故障树与BDD模型的转换 | — |
基于BDD的隐式模型[ | √ | √ | — | 独立、互斥、相关 | 需进行系统故障树与BDD模型的转换 | 转换后待计算的BDD模型数量2n(n为共因事件数量) |
模块化分析方法[ | √ | √ | √ | 独立、互斥、相关 | 需进行系统动态/静态模块划分, 以及故障树与BDD模型、Markov模型的转换 | 转换后待计算的问题数量与系统故障树的模块划分情况相关 |
基于BN的系统CCF模型[ | — | — | √ | 相互独立 | 可直接建立系统BN模型, 或由系统故障树模型进行转换 | 对不考虑CCF的系统BN模型进行扩展, 新增节点数量为2n-n-1(n为受共因事件影响的元件数量) |
基于BN的PCCF-PMS模型 | √ | √ | √ | 独立、互斥、相关 | 可直接建立系统BN模型, 或由系统故障树模型进行转换 | 对不考虑CCF的系统BN模型进行扩展, 新增一个节点表示共因事件空间 |
1 | XING L , AMARI S V . Reliability of phased-mission systems[M]. Berlin: Springer, 2008: 349- 368. |
2 |
李志强, 徐廷学, 顾钧元, 等. 复杂系统相关失效分析研究综述[J]. 失效分析与预防, 2017, 12 (2): 130- 136.
doi: 10.3969/j.issn.1673-6214.2017.02.012 |
LI Z Q , XU T X , GU J Y , et al. Review on research on dependent failure analysis of complex systems[J]. Failure Analysis and Prevention, 2017, 12 (2): 130- 136.
doi: 10.3969/j.issn.1673-6214.2017.02.012 |
|
3 | HAUGE S , HOKSTAD P , HÅBREKKE S , et al. Common cause failures in safety-instrumented systems: using field experience from the petroleum industry[J]. Reliability Engineering and System Safety, 2016, 151 (7): 34- 45. |
4 | ZAHNG M , ZHANG Z J , MOSLEH A , et al. Common cause failure model updating for risk monitoring in nuclear power plants based on alpha factor model[J]. Journal of Risk and Reliability, 2017, 231 (3): 209- 220. |
5 |
MATTHIAS C M , TROFFAES G W , DANA K . A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models[J]. Reliability Engineering and System Safety, 2014, 125, 13- 21.
doi: 10.1016/j.ress.2013.05.022 |
6 | 孔祥芬, 王杰, 张兆民. 基于贝叶斯网络和共因失效的飞机电源系统可靠性分析[J]. 航空学报, 2020, 41 (5): 270- 279. |
KONG X F , WANG J , ZHANG Z M . Reliability analysis of aircraft eleltrical power system based on Bayesian network and common cause failure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (5): 270- 279. | |
7 |
李志强, 徐廷学, 安进, 等. 冗余系统共因失效动态贝叶斯网络建模[J]. 仪器仪表学报, 2018, 39 (3): 190- 198.
doi: 10.19650/j.cnki.cjsi.J1702575 |
LI Z Q , XU T X , AN J , et al. Common cause failure modeling for redundant system based on dynamic Bayesian network[J]. Chinese Journal of Scientific Instrument, 2018, 39 (3): 190- 198.
doi: 10.19650/j.cnki.cjsi.J1702575 |
|
8 |
XING L D , LEVITIN G . BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures[J]. Reliability Engineering and System Safety, 2013, 112, 145- 153.
doi: 10.1016/j.ress.2012.12.003 |
9 |
LEVITIN G , XING L D , AMARI S V . Reliability of nonrepairable phased-mission systems with common cause failures[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2013, 43 (4): 967- 978.
doi: 10.1109/TSMCA.2012.2220761 |
10 |
LEVITIN G , XING L D , AMARI S V , et al. Reliability of non-repairable phased-mission systems with propagated failures[J]. Reliability Engineering and System Safety, 2013, 119, 218- 228.
doi: 10.1016/j.ress.2013.06.005 |
11 | XING L D, WANG W D. Probabilistic common-cause failures analysis[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2009: 354-358. |
12 |
WANG C N , XING L D , LEVITIN G . Explicit and implicit methods for probabilistic common-cause failure analysis[J]. Reliability Engineering and System Safety, 2014, 131, 175- 184.
doi: 10.1016/j.ress.2014.06.024 |
13 |
WANG C N , XING L D , LEVITIN G . Probabilistic common cause failures in phased-mission systems[J]. Reliability Engineering and System Safety, 2015, 144, 53- 60.
doi: 10.1016/j.ress.2015.07.004 |
14 | WANG C N, XING L D, VOKKARANE V M, et al. A phased-mission framework for communication reliability in WSN[C]//Proc. of the Reliability & Maintainability Symposium, 2014. |
15 |
曹文斌, 胡起伟, 苏续军, 等. 随机共因失效条件下的多阶段任务成功概率评估研究[J]. 兵工学报, 2017, 38 (4): 766- 775.
doi: 10.3969/j.issn.1000-1093.2017.04.019 |
CAO W B , HU Q W , SU X J , et al. Research on phased-mission success probability assessment under random common cause failures[J]. Acta Armamentarii, 2017, 38 (4): 766- 775.
doi: 10.3969/j.issn.1000-1093.2017.04.019 |
|
16 | 吴欢, 焦健, 赵廷弟. 一种考虑共因失效的PMS可靠性建模分析方法[J]. 北京航空航天大学学报, 2018, 44 (5): 1088- 1094. |
WU H , JIAO J , ZHAO T D . A reliability modeling and analysis method for PMS considering common cause failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (5): 1088- 1094. | |
17 |
XU Z P , MO Y C , LIU Y , et al. Reliability assessment of multi-state phased-mission systems by fusing observation data from multiple phases of operation[J]. Mechanical Systems and Signal Processing, 2019, 118, 603- 622.
doi: 10.1016/j.ymssp.2018.08.064 |
18 |
房丙午, 黄志球, 李勇, 等. 基于贝叶斯网络的复杂系统动态故障树定量分析方法[J]. 电子学报, 2016, 44 (5): 1234- 1239.
doi: 10.3969/j.issn.0372-2112.2016.05.032 |
FANG B W , HUANG Z Q , LI Y , et al. Quantitative analysis method of dynamic fault tree of complex system using Bayesian network[J]. Acta Electronica Sinica, 2016, 44 (5): 1234- 1239.
doi: 10.3969/j.issn.0372-2112.2016.05.032 |
|
19 |
张友鹏, 杨金凤. 基于动态贝叶斯网络的CTCS-3级ATP系统可靠性分析[J]. 铁道学报, 2017, 39 (7): 79- 86.
doi: 10.3969/j.issn.1001-8360.2017.07.012 |
ZHANG Y P , YANG J F . Reliability analysis on ATP system of CTCS-3 based on dynamic Bayesian network[J]. Journal of the China Railway Society, 2017, 39 (7): 79- 86.
doi: 10.3969/j.issn.1001-8360.2017.07.012 |
|
20 | 张振海, 王悦榕, 党建武. 基于证据理论和贝叶斯网络的列控车载子系统可靠性分析[J]. 铁道科学与工程学报, 2020, 17 (9): 2208- 2215. |
ZHANG Z H , WANG Y R , DANG J W . Reliability analysis of on-board subsystem of train control system based on evidence theory and Bayesian network method[J]. Journal of Railway Science and Engineering, 2020, 17 (9): 2208- 2215. | |
21 | 古莹奎, 沈延军, 张全新, 等. 基于贝叶斯网络的多状态共因失效系统可靠性分析[J]. 机械设计与研究, 2018, 34 (2): 1- 4. 1-4, 9 |
GU Y K , SHEN Y J , ZHANG Q X , et al. Multi-state common cause failure system reliability analysis based on Bayesian network[J]. Machine Design and Research, 2018, 34 (2): 1- 4. 1-4, 9 | |
22 | 江磊, 王小敏, 蔺伟. 基于动态贝叶斯网络的列控中心可靠性及可用性评估[J]. 交通运输系统工程与信息, 2018, 18 (3): 182- 188. 182-188, 217 |
JIANG L , WANG X M , LIN W . Reliability and availability evaluation of train control center based on dynamic Bayesian network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (3): 182- 188. 182-188, 217 | |
23 |
QIU S Q , HOU Y H , MING H X G . An implicit method for probabilistic common-cause failure analysis using Bayesian network[J]. IFAC PapersOnLine, 2018, 51 (24): 1037- 1042.
doi: 10.1016/j.ifacol.2018.09.718 |
24 | 厉海涛, 金光, 周经伦, 等. 贝叶斯网络推理算法综述[J]. 系统工程与电子技术, 2008, 30 (5): 935- 939. |
LI H T , JIN G , ZHOU J L , et al. Survey of Bayesian network inference algorithms[J]. Systems Engineering and Electronics, 2008, 30 (5): 935- 939. | |
25 | KIM J Y , SHAH A U A , KANG H G . Dynamic risk assessment with Bayesian network and clustering analysis[J]. Reliability Engineering and System Safety, 2020, 201, 106959. |
26 | ZHOU D , PAN E , ZHANG X F , et al. Dynamic model-based saddle-point approximation for reliability and reliability-based sensitivity analysis[J]. Reliability Engineering and System Safety, 2020, 201, 106972. |
27 | LEWIS D A , GROTH M K . A dynamic Bayesian network structure for joint diagnostics and prognostics of complex engineering systems[J]. Algorithms, 2020, 13 (3): 64. |
28 | LEE D , CHOI D S . Analysis of the reliability of a starter-generator using a dynamic Bayesian network[J]. Reliability Engineering and System Safety, 2020, 195, 106628. |
29 | XUE S S , LI X G , WANG X F . Fault diagnosis of multi-state gas monitoring network based on fuzzy Bayesian net[J]. Personal and Ubiquitous Computing, 2019, 23 (3/4): 573- 581. |
30 | WANG C , LIU Y P , HOU W , et al. Reliability and availability modeling of Subsea Xmas tree system using dynamic Bayesian network with different maintenance methods[J]. Journal of Loss Prevention in the Process Industries, 2020, 64, 104066. |
31 | ANDAS A , VASILEIOS Z , CHRISTOS S . Reliability analysis and functional design using Bayesian networks generated automatically by an "Idea Algebra" framework[J]. Reliability Engineering and System Safety, 2018, 180, 211- 225. |
[1] | Yifan LI, Huaming QIAN, Hongzhong HUANG, Tingyu ZHANG, Tudi HUANG. Reliability analysis of command and control network system based on generalized continuous time Bayesian network [J]. Systems Engineering and Electronics, 2022, 44(12): 3880-3886. |
[2] | Yanzhao LIU, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN [J]. Systems Engineering and Electronics, 2022, 44(10): 3143-3154. |
[3] | Zelong MAO, Zhihua WANG, Qiong WU, Chengrui LIU. Bivariate and two-stage degradation modeling and reliability analysis [J]. Systems Engineering and Electronics, 2021, 43(12): 3725-3731. |
[4] | Yuqi CHEN, Tingxue XU, Zhiqiang LI, Haijun LI. Dynamic reliability analysis of complex multi-state system based on evidence GO method [J]. Systems Engineering and Electronics, 2020, 42(1): 230-237. |
[5] | LI Xiaopeng, HUANG Hongzhong, LI Fuqiu. PRA based reliability analysis of complex space phased-mission system [J]. Systems Engineering and Electronics, 2019, 41(9): 2141-2147. |
[6] | YAN Hua, WANG Yisheng, WANG Ruiqi, LIU Bo, GUO Liqing, XIAO Hua. Reliability parallel computing method for large phased-mission system based on GPU [J]. Systems Engineering and Electronics, 2019, 41(1): 215-222. |
[7] | YANG Lechang, GUO Yanling. Bayesian melding approach of probability distribution fusion for system reliability analysis and prediction [J]. Systems Engineering and Electronics, 2018, 40(7): 1660-1668. |
[8] | LAN Jie, YUAN Hongjie, XIA Jing. Improved method for dynamic fault tree analysis based on discrete time Bayesian network [J]. Systems Engineering and Electronics, 2018, 40(4): 948-953. |
[9] | CAO Yingsai, LIU Sifeng, FANG Zhigeng, ZHANG Qin. Generalized grey Bayesian network model for reliability analysis of multi-state system [J]. Systems Engineering and Electronics, 2018, 40(1): 231-237. |
[10] | LI Zhiqiang, XU Tingxue, GU Junyuan, AN Jin, LIU Yudong. Reliability analysis of a missile control system by fusing uncertain information [J]. Systems Engineering and Electronics, 2017, 39(12): 2869-2876. |
[11] | LU Yan-jing, CHENG Ben, CHEN Ying-wu, ZHAO Qing-song. Capability weightiness degree analysis of weaponry system of systems based on BN theory [J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1605-1612. |
[12] | SHEN Jia-jie, LIN Feng. Structure learning of Bayesian network using adaptive hybrid Memetic algorithm [J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1293-1298. |
[13] | YAN Hua, WU Xiao-yue. Improved Krylov subspace projection algorithm for reliability analysis of TT&C and communication system [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2180-2186. |
[14] | HU Tao, YU Jian. Reliability optimization model of n/k(G) phased mission systems [J]. Journal of Systems Engineering and Electronics, 2012, 34(1): 217-220. |
[15] | JIANG Ying-jie, SUN Zhi-qiang, XIE Hong-wei, GONG Er-ling. Human error probability quantification method based on Bayesian information fusion [J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 949-953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||