Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (3): 850-862.doi: 10.12305/j.issn.1001-506X.2022.03.18
• Systems Engineering • Previous Articles Next Articles
Feiran GUO, Jianqiao YU*, Bao SONG
Received:
2021-03-03
Online:
2022-03-01
Published:
2022-03-10
Contact:
Jianqiao YU
CLC Number:
Feiran GUO, Jianqiao YU, Bao SONG. Optimal design of missile types in missile equipment system based on assignment model[J]. Systems Engineering and Electronics, 2022, 44(3): 850-862.
Table 17
Influence coefficients of different components attribute parameter values"
部件类型 | 属性 | 参数值 | 影响系数 |
导引头 | 有效作用距离/km | 8 | 0.8 |
9 | 0.9 | ||
10 | 1.0 | ||
IMU | 姿态精度/(°/h) | 1 | 1.0 |
2 | 0.9 | ||
3 | 0.8 | ||
位置精度/(m/h) | 1 | 1.0 | |
2 | 0.9 | ||
3 | 0.8 | ||
舵机 | 最大舵偏角/(°) | 25 | 0.8 |
30 | 0.9 | ||
35 | 1.0 | ||
最大舵偏角速度/(°/s) | 200 | 0.8 | |
225 | 0.9 | ||
250 | 1.0 | ||
发动机 | 推力/kN | 40 | 0.8 |
45 | 0.9 | ||
50 | 1.0 | ||
总冲/(kN·s) | 300 | 0.8 | |
350 | 0.9 | ||
400 | 1.0 | ||
战斗部 | 质量/kg | 150 | 0.8 |
175 | 0.9 | ||
200 | 1.0 |
Table 18
Optimal missile combinations, parameter values and absolute contribution degrees of corresponding system effectiveness obtained by the fast solution method based on operational loop"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.005 00 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.007 80 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 150 | 0.000 90 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 175 | 0.002 80 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 81 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.003 60 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.004 40 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.007 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.000 07 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.002 80 |
S1M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.000 30 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 03 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.000 84 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.003 60 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.001 40 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.005 00 |
Table 19
Optimal missile combinations, parameter values and absolute contribution degrees of corresponding system effectiveness obtained by cutting plane method"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
Table 20
Optimal missile combinations, parameter values and absolute contribution degrees of corresponding system effectiveness obtained by branch and bound method"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.005 00 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.007 80 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 150 | 0.000 90 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 175 | 0.002 80 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 81 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.003 60 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.004 40 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.007 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.000 07 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.002 80 |
S1M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.000 30 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 03 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.000 84 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.003 60 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.001 40 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.005 00 |
1 | 商巍, 赵涛, 环夏, 等. 导弹武器系统协同作战研究[J]. 战术导弹技术, 2018, (2): 31- 35, 48. |
SHANG W , ZHAO T , HUAN X , et al. Research on cooperative operation of missile weapon system[J]. Tactical Missile Technology, 2018, (2): 31- 35, 48. | |
2 |
李向林, 于本水. 防空导弹总体设计方法的新发展——弹族化设计[J]. 现代防御技术, 2002, 30 (3): 14- 20.
doi: 10.3969/j.issn.1009-086X.2002.03.004 |
LI X L , YU B S . New development of overall design method for air defense missile——family design[J]. Modern Defense Technology, 2002, 30 (3): 14- 20.
doi: 10.3969/j.issn.1009-086X.2002.03.004 |
|
3 |
邢恩峰, 钱建平, 赵国志. 面向大规模定制的弹药模块化设计及产品族规划研究[J]. 弹箭与制导学报, 2006, 26 (2): 582- 584, 587.
doi: 10.3969/j.issn.1673-9728.2006.02.184 |
XING E F , QIAN J P , ZHAO G Z . Research on modular design and product family planning of ammunition for mass customization[J]. Journal of projectile and guidance, 2006, 26 (2): 582- 584, 587.
doi: 10.3969/j.issn.1673-9728.2006.02.184 |
|
4 | 仝云. 防空导弹弹族多目标优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2011. |
TONG Y. Multi objective optimization design of air defense missile family[D]. Harbin: Harbin Engineering University, 2011. | |
5 |
孙晓峰. 针对不同质量战斗部的防空导弹弹族设计[J]. 现代防御技术, 2017, 45 (4): 50- 58.
doi: 10.3969/j.issn.1009-086x.2017.04.009 |
SUN X F . Design of air defense missile family for warheads of diffe-rent mass[J]. Modern Defense Technology, 2017, 45 (4): 50- 58.
doi: 10.3969/j.issn.1009-086x.2017.04.009 |
|
6 |
王克, 唐火红, 何其昌, 等. 混流生产线作业指派的优化方法研究[J]. 合肥工业大学学报(自然科学版), 2020, 43 (3): 316- 320.
doi: 10.3969/j.issn.1003-5060.2020.03.005 |
WANG K , TANG H H , HE Q C , et al. Research on the optimization method of job assignment in mixed model production line[J]. Journal of Hefei University of Technology (Natural Science Edition), 2020, 43 (3): 316- 320.
doi: 10.3969/j.issn.1003-5060.2020.03.005 |
|
7 | 田倩南, 李昆鹏, 李文莉, 等. 机场任务指派问题的优化方案研究[J]. 运筹与管理, 2019, 28 (11): 301- 308. |
TIAN Q N , LI K P , LI W L , et al. Research on optimization scheme of airport task assignment problem[J]. Operations Research and Management, 2019, 28 (11): 301- 308. | |
8 | AJAY K , CHINMAY P , SANTANU C . Task mapping and flow priority assignment of real-time industrial applications for network-on-clip based design[J]. Microprocessors and Microsystems, 2020, 342 (15): 4416- 4419. |
9 | 黄泽乾, 丁涛, 王雅. 自动化集装箱码头AGV调度研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43 (6): 1165- 1168. |
HUANG Z Q , DING T , WANG Y . Research on AGV scheduling of automated container terminals[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2019, 43 (6): 1165- 1168. | |
10 |
张超省, 王健, 李政民, 等. 作战工程保障行动中的一种战士-装备-任务指派模型及其求解[J]. 兵工学报, 2019, 40 (7): 1511- 1517.
doi: 10.3969/j.issn.1000-1093.2019.07.022 |
ZHANG C X , WANG J , LI Z M , et al. A soldier equipment task assignment model and its solution in combat engineering support operations[J]. Acta Ordnance, 2019, 40 (7): 1511- 1517.
doi: 10.3969/j.issn.1000-1093.2019.07.022 |
|
11 | 叶航航, 李泽仁, 刘浩, 等. 一种基于指派模型的导弹-目标分配算法[C]//中国自动化大会, 2018: 564-569. |
YE H H, LI Z R, LIU H, et al. A missile target assignment algorithm based on assignment model[C]//Proc. of the China Automation Conference, 2018: 564-569. | |
12 | XU J P , ZHOU X Y , WU D D . Portfolio selection using λ mean and hybrid entropy[J]. Annals of Operations Research, 2011, 185 (1): 1604- 1612. |
13 |
BUEDE D , BRESNICK T . Applications of decision analysis to the military systems acquisition process[J]. Interfaces, 1992, 22 (6): 110- 125.
doi: 10.1287/inte.22.6.110 |
14 |
BUCKSHAW L , PARNELL S , UNKENHOLZ L , et al. Mission oriented risk and design analysis of critical information systems[J]. Military Operations Research, 2005, 10 (2): 19- 38.
doi: 10.5711/morj.10.2.19 |
15 |
KANGASPUNTA J , LIESIÖ J , MILD P A . Cost-efficiency analysis of weapon system portfolios[J]. European Journal of Operational Research, 2012, 223 (1): 264- 275.
doi: 10.1016/j.ejor.2012.05.042 |
16 | 周宇. 基于能力的武器装备组合规划问题与方法[D]. 长沙: 国防科学技术大学, 2013. |
ZHOU Y. Problem and method of weapon equipment combination planning based on capability[D]. Changsha: University of Defense Science and Technology, 2013. | |
17 | 张骁雄, 葛冰峰. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F . Model and algorithm of weapon equipment combination planning for capability requirements[J]. Journal of National University of Defense Science and Techno-logy, 2017, 39 (1): 102- 108. | |
18 | 夏博远, 赵青松. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
XIA B Y , ZHAO Q S . Robust weapon system combination decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
19 |
钱晓超, 董晨, 陆志沣. 基于效能评估的武器装备体系优化设计方法[J]. 系统仿真技术, 2017, 13 (4): 286- 291, 362.
doi: 10.3969/j.issn.1673-1964.2017.04.004 |
QIAN X C , DONG C , LU Z F . Weapon system optimization design method based on effectiveness evaluation[J]. System Simulation Technology, 2017, 13 (4): 286- 291, 362.
doi: 10.3969/j.issn.1673-1964.2017.04.004 |
|
20 | 豆亚杰, 徐向前, 周哲轩, 等. 系统组合选择方法及典型军事应用[J]. 系统工程与电子技术, 2019, 41 (12): 2754- 2762. |
DOU Y J , XU X Q , ZHOU Z X , et al. System combination selection method and typical military applications[J]. Systems Engineering and Electronics, 2019, 41 (12): 2754- 2762. | |
21 | 张杰, 唐宏, 苏凯. 效能评估方法研究[M]. 北京: 国防工业出版社, 2009. |
ZHANG J , TANG H , SU K . Research on effectiveness evaluation method[M]. Beijing: National Defense Industry Press, 2009. | |
22 | 郭新宝. 一类基于AHP和0-1规划的导游指派问题模型[J]. 统计与决策, 2014, (15): 34- 37. |
GUO X B . A guide assignment problem model based on AHP and 0-1 programming[J]. Statistics and Decision Making, 2014, (15): 34- 37. | |
23 | 顾文亚, 孟祥瑞, 陈允杰. 运筹学: 数学规划(上)[M]. 镇江: 江苏大学出版社, 2015. |
GU W Y , MENG X R , CHEN Y J . Operations research: mathematical programming (I)[M]. Zhenjiang: Jiangsu University Press, 2015. | |
24 | 郑烨, 王明杰, 樊娟. 基于匈牙利法的企业员工任务分配问题研究[J]. 统计与决策, 2011, (5): 182- 185. |
ZHENG Y , WANG M J , FAN J . Research on task allocation of enterprise employees based on Hungarian law[J]. Statistics and Decision Making, 2011, (5): 182- 185. | |
25 | 邓成梁, 黄卫来, 周康. 运筹学的原理和方法[M]. 3版 武汉: 华中科技大学出版社, 2014. |
DENG C L , HUANG W L , ZHOU K . Principles and methods of operations research[M]. 3rd ed Wuhan: Huazhong University of Science and Technology Press, 2014. | |
26 |
杨明歌, 常水珍. 求解整数规划的割平面法的研究[J]. 洛阳师范学院学报, 2014, 33 (5): 1- 4, 12.
doi: 10.3969/j.issn.1009-4970.2014.05.001 |
YANG M G , CHANG S Z . Research on cutting plane method for integer programming[J]. Journal of Luoyang Normal University, 2014, 33 (5): 1- 4, 12.
doi: 10.3969/j.issn.1009-4970.2014.05.001 |
|
27 | 徐晓辉. 数学建模应用中整数线性规划问题的常用解法初探[J]. 现代职业教育, 2021, (7): 178- 179. |
XU X H . A preliminary study on the common solutions of integer linear programming problems in the application of mathematical modeling[J]. Modern Vocational Education, 2021, (7): 178- 179. | |
28 | 仝哲, 张炳江, 李慧. 关于存在多组最优解的整数线性规划问题的割平面法的研究[J]. 数学的实践与认识, 2017, 47 (5): 158- 164. |
TONG Z , ZHANG B J , LI H . Research on cutting plane method for integer linear programming problems with multiple optimal solutions[J]. Practice and Understanding of Mathema-tics, 2017, 47 (5): 158- 164. | |
29 | 熊伟. 运筹学[M]. 3版 北京: 机械工业出版社, 2014: 81 |
XIONG W . Operations research[M]. 3rd ed Beijing: China Machine Press, 2014: 81 | |
30 | WAN C Q, XIONG W T, ZHAO Q S, et al. Operation loop based optimization model for resource allocation in defense[C]// Proc. of the Chinese Control and Decision Conference, 2018: 416-421. |
31 |
谭跃进, 张小可, 杨克巍. 武器装备体系网络化描述与建模方法[J]. 系统管理学报, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
TAN Y J , ZHANG X K , YANG K W . Networked description and modeling method of weapon system of systems[J]. Journal of Systems Management, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
|
32 | WAN C Q . Optimization model for resource allocation to military countermeasures versus probabilistic threat[J]. Applied Sciences, 2018, 8 (2): 368- 396. |
[1] | Ang GAO, Qisheng GUO, Zhiming DONG, Shaoqing YANG. Research on efficiency evaluation method of multi unmanned ground vehicle system based on EAS+MADRL [J]. Systems Engineering and Electronics, 2021, 43(12): 3643-3651. |
[2] | Yueqiang ZHAO, Shi AN, Qiang MAI, Qingyan XU, Yanan GUO. Effectiveness modeling of air defense missile weapon system based on ADC method [J]. Systems Engineering and Electronics, 2020, 42(9): 2003-2012. |
[3] | ZHAO Yueqiang1,2, MAI Qiang1, XU Qingyan3. Dependability modeling research of airdefense missile weapon systems [J]. Systems Engineering and Electronics, 2016, 38(12): 2777-2784. |
[4] | DUAN Xiusheng, XU Gongguo, SHAN Ganlin. Solution to sensortarget assignment problem based on cooperative#br# memetic adaptive QPSO algorithm [J]. Systems Engineering and Electronics, 2016, 38(12): 2769-2776. |
[5] | XING Li-ning, YAO Feng. Learnable genetic algorithm to double-layer CARP optimization problems [J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1187-1192. |
[6] | HUANG Shu-cai, ZHOU Yan-yan, WEI Gang. Operation effectiveness analysis of anti-TBM system with space-based information support [J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2414-2417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||