Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1144-1151.doi: 10.12305/j.issn.1001-506X.2023.04.23
• Guidance, Navigation and Control • Previous Articles
Kaifeng CHEN1, Borui TIAN1, Heqing LI2, Chenyang ZHAO1, Zuxing LU1, Xinde LI1,3,*, Yong DENG4
Received:
2022-03-18
Online:
2023-03-29
Published:
2023-03-28
Contact:
Xinde LI
CLC Number:
Kaifeng CHEN, Borui TIAN, Heqing LI, Chenyang ZHAO, Zuxing LU, Xinde LI, Yong DENG. Research on DDPG-based motion control of two-wheel-legged robot[J]. Systems Engineering and Electronics, 2023, 45(4): 1144-1151.
1 |
KLEMM V , MORRA A , GULICH L , et al. LQR-assisted whole-body control of a wheeled Bipedal, robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3745- 3752.
doi: 10.1109/LRA.2020.2979625 |
2 | WANG S, CUI L L, ZHANG J, et al. Balance control of a novel wheel-legged robot: design and experiments[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2021: 6782-6788. |
3 | B. Dynamics. Handle[EB/OL]. [2022-02-18]. https://www.youtube.com/watch?v=-7xvqQeoA8c. |
4 |
DE VIRAGH Y , BJELONIC M , BELLICOSO C D , et al. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 1633- 1640.
doi: 10.1109/LRA.2019.2896721 |
5 | BJELONIC M , BELLICOSO C D , VIRAGH Y D , et al. "Keep rollin"—whole-body motion control and planning for wheeled quadrupedal robots[J]. IEEE Robotics and Automation Letters, 2019, 4, 22116- 2123. |
6 | BJELONIC M , SANKAR P K , BELLICOSO C D , et al. Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization[J]. IEEE Robotics and Automation Letters, 2022, 5 (2): 3626- 3633. |
7 | WANG S K , CHEN Z H , LI J H , et al. Flexible motion framework of the six wheel-legged robot: experimental results[J]. IEEE/ASME Trans.on Mechatronics, 2021, 27 (4): 2246- 2257. |
8 | ZHANG C, LI X L, ZHU X Q, et al. A step-climbing strategy of hexapod robot with eccentric wheel legs[C]//Proc. of the IEEE 7th Data Driven Control and Learning Systems Conference, 2018: 426-430. |
9 | KLEMM V, MORRA A, SALZMANN C, et al. Ascento: a two-wheeled jumping robot[C]//Proc. of the IEEE/RSJ International Conference on Robotics and Automation, 2019: 7515-7521. |
10 | CHEN S X, ROGERS J, ZHANG B K, et al. Feedback control for autonomous riding of hovershoes by a cassie bipedal robot[C]//Proc. of the IEEE-RAS 19th International Conference on Humanoid Robots, 2019. |
11 |
CUI L L , WANG S , ZHANG J F , et al. Learning-based balance control of wheel-legged robots[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 7667- 7674.
doi: 10.1109/LRA.2021.3100269 |
12 | SUGAYA J, OHBA Y, KANMACHI T, et al. Simulation of standing upright control of an inverted pendulum using inertia rotor and the swing type inverted pendulum for engineering education[C]//Proc. of the International Conference on Information Technology and Electrical Engineering, 2017. |
13 | EINI R, ABDELWAHED S. Rotational inverted pendulum controller design using indirect adaptive fuzzy model predictive control[C]//Proc. of the IEEE International Conference on Fuzzy Systems, 2019. |
14 | XIN Y, XU J, XU B, et al. The inverted-pendulum model with consideration of pendulum resistance and its LQR controller[C]//Proc. of the International Conference on Electronic & Mechanical Engineering and Information Technology, 2011: 3438-3441. |
15 | 张弨. 双足轮腿机器人系统设计与运动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
ZHANG Z. Bipedal wheel-legged robot system design and motion control research[D]. Harbin: Harbin Institute of Technology, 2020. | |
16 | 纪胜昊. 两足轮腿机器人系统研制及模型预测控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
JI S H. Development of bipedal wheel-legged robot system and model predictive control method[D]. Harbin: Harbin Institute of Technology, 2021. | |
17 | FUJIMOTO S, VAN H H, MEGER D. Addressing function approximation error in actor-critic methods[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1802.09477. |
18 | LOPES D S J. NASCIMENTO C L. Gait synthesis of a hybrid legged robot using reinforcement learning[C]//Proc. of the Annual IEEE Systems Conference, 2015: 439-444. |
19 |
WONG C C , CHIEN S Y , FENG H M , et al. Motion planning for dual-arm robot based on soft actor-critic[J]. IEEE Access, 2021, 9, 26871- 26885.
doi: 10.1109/ACCESS.2021.3056903 |
20 | TOTANI M, SATO N, MORITA Y. Step climbing method for crawler type rescue robot using reinforcement learning with proximal policy optimization[C]//Proc. of the 12th International Workshop on Robot Motion and Control, 2019: 154-159. |
21 | VASQUEZ-JALPA C, NAKANO-MIYATAKE M, ESCAMILLA-HERNANDEZ E. A deep reinforcement learning algorithm based on modified twin delay DDPG method for robotic applications[C]//Proc. of the 21st International Conference on Control, Automation and Systems, 2021: 743-748. |
22 | WANG M C, RUAN X G, ZHU X Q. Heuristic gait learning of quadruped robot based on deep deterministic policy gradient algorithm[C]//Proc. of the Chinese Automation Congress, 2020: 1046-1049. |
23 | 闫安, 陈章, 董朝阳, 等. 基于模糊强化学习的双轮机器人姿态平衡控制[J]. 系统工程与电子技术, 2021, 43 (4): 1036- 1043. |
YAN A , CHEN Z , DONG C Y , et al. Attitude balance control of two-wheeled robot based on fuzzy reinforcement learning[J]. Systems Engineering and Electronics, 2021, 43 (4): 1036- 1043. | |
24 | XIN S Y, VIJAYAKUMAR S. Online dynamic motion planning and control for wheeled biped robots[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 3892-3899 |
25 | 赵玉婷, 韩宝玲, 罗庆生. 基于deep Q-network双足机器人非平整地面行走稳定性控制方法[J]. 计算机应用, 2018, 38 (9): 2459- 2463. |
ZHAO Y T , HAN B L , LUO Q S , et al. Stability control method for walking on non-level ground based on deep Q-network bipedal robot[J]. Computer Applications, 2018, 38 (9): 2459- 2463. | |
26 | ZHANG Y C, WANG T, TAN N, et al. Open-loop motion control of a hydraulic soft robotic arm using deep reinforcement learning[C]//Proc. of the Intelligent Robotics and Applications, 2021: 13013. |
27 | 冯春, 张祎伟, 黄成, 等. 双足机器人步态控制的深度强化学习方法[J]. 计算机集成制造系统, 2021, 27 (8): 2341- 2349. |
FENG C , ZHANG Y W , HUANG C , et al. Deep reinforcement learning method for gait control of bipedal robots[J]. Computer Integrated Manufacturing Systems, 2021, 27 (8): 2341- 2349. | |
28 | LILLICRAP T P. Continuous control with deep reinforcement learning[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1509.0297/v6. |
29 | SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proc. of the 31st International Conference on Machine Learning, 2014: 605-619. |
30 | 周友行, 赵晗妘, 刘汉江, 等. 采用DDPG的双足机器人自学习步态规划方法[J]. 计算机工程与应用, 2021, 57 (6): 254- 259. |
ZHOU Y X , ZHAO H Y , LIU H J , et al. A self-learning gait planning method for bipedal robots using DDPG[J]. Computer Engineering and Applications, 2021, 57 (6): 254- 259. | |
31 | HEESS N. Emergence of locomotion behaviours in rich environments[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1707.02286. |
[1] | Siqi TANG, Zhisong PAN, Guyu HU, Yang WU, Yunbo LI. Application of deep reinforcement learning in space information network——status quo and prospects [J]. Systems Engineering and Electronics, 2023, 45(3): 886-901. |
[2] | Zhi REN, Dong ZHANG, Shuo TANG. Improved three-dimensional A* algorithm of real-time path planning based on reinforcement learning [J]. Systems Engineering and Electronics, 2023, 45(1): 193-201. |
[3] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Research on decision-making modeling of cognitive jamming for multi-functional radar based on Markov [J]. Systems Engineering and Electronics, 2022, 44(8): 2488-2497. |
[4] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[5] | Lingyu MENG, Bingli GUO, Wen YANG, Xinwei ZHANG, Zuoqing ZHAO, Shanguo HUANG. Network routing optimization approach based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(7): 2311-2318. |
[6] | Dongzi GUO, Rong HUANG, Hechuan XU, Liwei SUN, Naigang CUI. Research on deep deterministic policy gradient guidance method for reentry vehicle [J]. Systems Engineering and Electronics, 2022, 44(6): 1942-1949. |
[7] | Mingren HAN, Yufeng WANG. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661. |
[8] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[9] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Multi-function radar intelligent jamming decision method based on prior knowledge [J]. Systems Engineering and Electronics, 2022, 44(12): 3685-3695. |
[10] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[11] | Bin ZENG, Hongqiang ZHANG, Houpu LI. Research on anti-submarine strategy for unmanned undersea vehicles [J]. Systems Engineering and Electronics, 2022, 44(10): 3174-3181. |
[12] | Qitian WAN, Baogang LU, Yaxin ZHAO, Qiuqiu WEN. Autopilot parameter rapid tuning method based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(10): 3190-3199. |
[13] | Bin ZENG, Rui WANG, Houpu LI, Xu FAN. Scheduling strategies research based on reinforcement learning for wartime support force [J]. Systems Engineering and Electronics, 2022, 44(1): 199-208. |
[14] | Zhiwei JIANG, Yang HUANG, Qihui WU. Anti-interference frequency allocation based on kernel reinforcement learning [J]. Systems Engineering and Electronics, 2021, 43(6): 1547-1556. |
[15] | Jiayi LIU, Shaohua YUE, Gang WANG, Xiaoqiang YAO, Jie ZHANG. Cooperative evolution algorithm of multi-agent system under complex tasks [J]. Systems Engineering and Electronics, 2021, 43(4): 991-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||