Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 1969-1975.doi: 10.3969/j.issn.1001-506X.2020.09.12
Previous Articles Next Articles
Bokai ZHANG1,2(), Weigang ZHU1(
)
Received:
2019-09-18
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Bokai ZHANG, Weigang ZHU. Construction and key technologies of cognitive jamming decision-making system against MFR[J]. Systems Engineering and Electronics, 2020, 42(9): 1969-1975.
1 | Defense Advanced Research Projects Agency. Behavior learning for adaptive electronic warfare[EB/OL].[2019-03-23]. http://www.docin.com/p-669437354.html. |
2 | Defense Advanced Research Projects Agency. Adaptive radar countermeasures[EB/OL].[2019-06-26]. https://www.docin.com/p-623526952.html. |
3 | CONMAY M D, RUSSEL D D, MORRIS A, et al. Multifunction phased array radar advanced technology demonstrator near-field test results[C]//Proc.of the Radar Conference, 2018. DOI: 10.1109/RADA.2018.8378771. |
4 | KOEALSKI E, CONMAY D, MORRIS A, et al. Multifunction phased array radar advanced technology demonstrator nearfield testing and fielding[C]//Proc.of the Radar Conference, 2019. DOI: 10.1109/RADAR.2019.8835837. |
5 | KAWANISHI T, KUROZUMI T, KASHINO K, et al. A fast template matching algorithm with adaptive skipping using inner-subtemplates' distances[C]//Proc.of the 17th International Conference on Pattern Recognition, 2004: 654-657. |
6 | CLARKLE J, SUBRAMANIA A K. A game theory approach to radar ECCM evaluation[C]//Proc.of the International Radar Conference on Institute of Electrical and Electronics Engineers, 1985: 197-203. |
7 | 唐文龙, 张剑云, 王冰川, 等. 干扰样式选择方法研究[J]. 现代雷达, 2017, 39 (1): 72- 76. |
TANG W L , ZHANG J Y , WANG B C , et al. Research on interference pattern selection method[J]. Modern Radar, 2017, 39 (1): 72- 76. | |
8 | SULTANA R, SARKAR M Z I, HOSSAIN M S. Linear precoding techniques in enhancing security of cognitive radio networks[C]//Proc.of the 2nd International Conference on Electrical, Computer & Telecommunication Engineering, 2016. DOI: 10.1109/ICECTE.2016.7879635. |
9 | HAO T D , CUI C , GONG Y . Efficient low-PAR waveform design method for extended target estimation based on information theory in cognitive radar[J]. Entropy, 2019, 21 (3): 261. |
10 | FENG X F , GAO X B , ZONG R . Cooperative jamming for enhancing security of cognitive radio networks with multiple primary users[J]. China Communication, 2017, 14 (7): 93- 107. |
11 | 顾燕飞.对反舰导弹末制导雷达的干扰技术研究[D].镇江:江苏科技大学, 2012. |
GU Y F. Research on jamming technology against terminal guidance radar of anti-ship missile[D]. Zhenjiang: Jiangsu University of Science and Technology, 2012. | |
12 | 江舸,张锡祥.针对末制导雷达干扰的干扰样式研究[D].成都:电子科技大学, 2007. |
JIANG G, ZHANG X X. Research on jamming pattern against terminal guided radar jamming[D]. Chengdu: University of Electronic and Technology of China, 2007. | |
13 | 盛骥松, 尤逸. 相控阵末制导雷达机器干扰技术研究进展[J]. 科技导报, 2019, 37 (4): 47- 54. |
SHENG J S , YOU Y . Development of phased array terminal guidance and its interference technology[J]. Science and Technology Review, 2019, 37 (4): 47- 54. | |
14 | 周续力,张锡祥,韩焱.对搜索警戒雷达的距离欺骗和航迹欺骗研究[D].太原:中北大学, 2008. |
ZHOU X L, ZHANG X X, HAN Y. Research on range deception and track deception against surveillance and warning radar[D]. Taiyuan: North University of China, 2008. | |
15 | 王强. 舰艇编队监视雷达间的同频干扰分析[J]. 舰船电子对抗, 2009, 32 (2): 10- 13. |
WANG Q . Analysis of shared-frequency interference among surveillance radars in ship formation[J]. Shipboard Electronic Countermeasure, 2009, 32 (2): 10- 13. | |
16 | GOANDLOVE.对抗单脉冲雷达,有这几种欺骗干扰技术[EB/OL]. [2019-11-06]. http://www.360doc.com/content/18/0410/21/908538_744563515.shtml. |
GOANDLOVE. Against mono-pulse radar, there are several deceptive jamming techniques[EB/OL].[2019-11-06]. http://www.360doc.com/content/18/0410/21/908538_744563515.shtml. | |
17 | 赵艳丽, 王雪松, 王国玉, 等. 多假目标欺骗干扰下组网雷达跟踪技术[J]. 电子学报, 2007, 3 (3): 454- 458. |
ZHAO Y L , WANG X S , WANG G Y , et al. Tracking technique for radar network in the presence of multi-range-false-target deception jamming[J]. Acta Electronic Sinica, 2007, 3 (3): 454- 458. | |
18 | 李尚生, 邹瀚锋, 付哲泉. 基于拖引干扰的合成孔径雷达欺骗干扰研究[J]. 计算机与数字工程, 2019, 47 (3): 553- 558. |
LI S S , ZOU H F , FU Z Q . Research on synthetic aperture radar deception jamming based on towed jamming[J]. Computer & Digital Engineering, 2019, 47 (3): 553- 558. | |
19 | 郑小亮, 刘江洪, 王宝帅, 等. 距离-速度相参干扰对目标识别雷达欺骗干扰效能分析[J]. 电子信息对抗技术, 2017, 32 (5): 52- 56. |
ZHENG X L , LIU J H , WANG B S . Analysis of range-Doppler coherent jamming performance against radar with the RATR technique[J]. Electronic Information Warfare Technology, 2017, 32 (5): 52- 56. | |
20 | MULLER T, MARQUARDT P, BRUGGENWIRTH S. A load balancing surveillance algorithm for multifunctional radar resource management[C]//Proc.of the 20th International Radar Symposium, 2019. |
21 | BUSONIU L , BABUSKA R , SCHUTTER B D , et al. Reinforcement learning and dynamic programming using function approximators[M]. Boca Raton: CRC Press, 2017. |
22 | LI K, JIU B, LIU H W. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive radar[C]//Proc.of the International Conference on Signal Processing, Communications and Computing, 2018.DOI: 10.1109/ICSPCC.2018.8567751. |
23 | LAN H W, EIBE F. Data mining: practical machine learning tools and techniques[M]. 4th ed. Amsterdam: Elsevier Science, 2016. |
24 | BUTTOU L , CURTIS F E , NOCEDAL J . Optimization met-hods for large-scale machine learning[J]. Society for Industrial and Applied Mathematics, 2018, 60 (2): 223- 311. |
25 | SAJAD H K , SAEED B S , SOROUSH S K . Path planning of modular robots on various terrains using Q-learning versus optimization algorithms[J]. Intelligent Service Robotics, 2017, 10 (2): 121- 136. |
26 | 张柏开, 朱卫纲. 基于Q-Learning的多功能雷达认知干扰决策方法[J]. 电讯技术, 2020, 60 (2): 129- 136. |
ZHANG B K , ZHU W G . Cognitive jamming decision method for multifunctional radar Based on Q-Learning[J]. Telecommunication Engineering, 2020, 60 (2): 129- 136. | |
27 | MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533. |
28 | 张柏开, 朱卫纲. 对多功能雷达的DQN认知干扰决策方法[J]. 系统工程与电子技术, 2020, 42 (4): 819- 825. |
ZHANG B K , ZHU W G . DQN based decision-making method of cognitive jamming against multifunctional radar[J]. Systems Engineering and Electronics, 2020, 42 (4): 819- 825. |
[1] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Research on decision-making modeling of cognitive jamming for multi-functional radar based on Markov [J]. Systems Engineering and Electronics, 2022, 44(8): 2488-2497. |
[2] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[3] | Lingyu MENG, Bingli GUO, Wen YANG, Xinwei ZHANG, Zuoqing ZHAO, Shanguo HUANG. Network routing optimization approach based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(7): 2311-2318. |
[4] | Dongzi GUO, Rong HUANG, Hechuan XU, Liwei SUN, Naigang CUI. Research on deep deterministic policy gradient guidance method for reentry vehicle [J]. Systems Engineering and Electronics, 2022, 44(6): 1942-1949. |
[5] | Mingren HAN, Yufeng WANG. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661. |
[6] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[7] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Multi-function radar intelligent jamming decision method based on prior knowledge [J]. Systems Engineering and Electronics, 2022, 44(12): 3685-3695. |
[8] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[9] | Bin ZENG, Hongqiang ZHANG, Houpu LI. Research on anti-submarine strategy for unmanned undersea vehicles [J]. Systems Engineering and Electronics, 2022, 44(10): 3174-3181. |
[10] | Qitian WAN, Baogang LU, Yaxin ZHAO, Qiuqiu WEN. Autopilot parameter rapid tuning method based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(10): 3190-3199. |
[11] | Bin ZENG, Rui WANG, Houpu LI, Xu FAN. Scheduling strategies research based on reinforcement learning for wartime support force [J]. Systems Engineering and Electronics, 2022, 44(1): 199-208. |
[12] | Zhiwei JIANG, Yang HUANG, Qihui WU. Anti-interference frequency allocation based on kernel reinforcement learning [J]. Systems Engineering and Electronics, 2021, 43(6): 1547-1556. |
[13] | Jiayi LIU, Shaohua YUE, Gang WANG, Xiaoqiang YAO, Jie ZHANG. Cooperative evolution algorithm of multi-agent system under complex tasks [J]. Systems Engineering and Electronics, 2021, 43(4): 991-1002. |
[14] | An YAN, Zhang CHEN, Chaoyang DONG, Kanghui HE. Attitude balance control of two-wheeled robot based on fuzzy reinforcement learning [J]. Systems Engineering and Electronics, 2021, 43(4): 1036-1043. |
[15] | Chen LI, Yanyan HUANG, Yongliang ZHANG, Tiande CHEN. Multi-agent decision-making method based on Actor-Critic framework and its application in wargame [J]. Systems Engineering and Electronics, 2021, 43(3): 755-762. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||