Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (3): 550-556.doi: 10.3969/j.issn.1001-506X.2020.03.007
Previous Articles Next Articles
Shanxue CHEN1,2(), Wenwen CHEN1,2(
)
Received:
2019-04-02
Online:
2020-03-01
Published:
2020-02-28
Supported by:
CLC Number:
Shanxue CHEN, Wenwen CHEN. Joint sparse representation of hyperspectral image classification based on secondary dictionary[J]. Systems Engineering and Electronics, 2020, 42(3): 550-556.
Table 4
Salina-A data set total classification accuracy (150 atoms) %"
类别 | 字典原子个数/个 | 测试样本个数/个 | OMP | cdSRC | KNN | K-JSRC | 改进算法 |
1 | 150 | 2 009 | 98.66 | 100.00 | 98.01 | 100.00 | 100.00 |
2 | 150 | 3 726 | 98.63 | 99.92 | 98.95 | 99.70 | 99.92 |
3 | 150 | 1 976 | 96.46 | 100.00 | 98.94 | 100.00 | 100.00 |
4 | 150 | 1 394 | 98.92 | 99.86 | 99.28 | 98.92 | 99.57 |
5 | 150 | 2 678 | 95.37 | 99.03 | 95.59 | 98.84 | 98.95 |
6 | 150 | 3 959 | 99.75 | 99.80 | 99.22 | 99.72 | 99.75 |
7 | 150 | 3 579 | 99.72 | 99.80 | 99.16 | 99.80 | 99.92 |
8 | 150 | 11 271 | 69.05 | 90.87 | 63.22 | 92.17 | 99.65 |
9 | 150 | 6 023 | 98.61 | 98.68 | 96.66 | 100.00 | 100.00 |
10 | 150 | 3 278 | 91.85 | 99.60 | 90.51 | 97.44 | 98.72 |
11 | 150 | 1 068 | 98.78 | 99.72 | 94.57 | 99.16 | 99.63 |
12 | 150 | 1 927 | 96.32 | 100.00 | 99.90 | 99.95 | 100.00 |
13 | 150 | 916 | 95.74 | 98.91 | 97.05 | 99.02 | 98.80 |
14 | 150 | 1 070 | 96.54 | 95.79 | 93.55 | 96.54 | 96.54 |
15 | 150 | 7 268 | 62.16 | 74.61 | 69.36 | 88.43 | 92.45 |
16 | 150 | 1 807 | 99.06 | 99.00 | 98.62 | 99.67 | 99.89 |
总体分类精度 | 86.93 | 94.29 | 86.40 | 96.41 | 98.64 |
1 |
PAL M , FOODY G M . Feature selection for classification of hyperspectral data by SVM[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48 (5): 2297- 2307.
doi: 10.1109/TGRS.2009.2039484 |
2 |
CHEN Y , NASRABADI N M , TRAN T D . Hyperspectral image classification via kernel sparse representation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (1): 217- 231.
doi: 10.1109/TGRS.2012.2201730 |
3 |
CAMPS-VALLS G , BANDOS M T , ZHOU D . Semi-supervised graph-based hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (10): 3044- 3054.
doi: 10.1109/TGRS.2007.895416 |
4 |
MELGANI F , BRUZZONE L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans.on Geoscience and Remote Sensing, 2004, 42 (8): 1778- 1790.
doi: 10.1109/TGRS.2004.831865 |
5 | XIE H , ZHAO A , HUANG S , et al. Unsupervised hyperspectral remote sensing image clustering based on adaptive density[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (4): 632- 636. |
6 | WINDRIM L , RAMAKRISHAN R , MELKUMYAN A , et al. A physics-based deep learning approach to shadow invariant representations of hyperspectral images[J]. IEEE Trans.on Image Processing, 2018, PP (99): 1. |
7 |
LI J , ZHAO X , LI Y , et al. Classification of hyperspectral imagery using a new fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (2): 292- 296.
doi: 10.1109/LGRS.2017.2786272 |
8 | LEE H, KWON H. Contextual deep CNN based hyperspectral classification[C]//Proc.of the Geoscience & Remote Sensing Symposium, 2016: 1-1. |
9 |
CHEN Y , JIANG H , LI C , et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (10): 6232- 6251.
doi: 10.1109/TGRS.2016.2584107 |
10 |
LEE H , KWON H . Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Trans.on Image Process, 2017, 26 (10): 4843- 4855.
doi: 10.1109/TIP.2017.2725580 |
11 |
CHEN Y , NARSRABADI N M , TRAN T D . Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (10): 3973- 3985.
doi: 10.1109/TGRS.2011.2129595 |
12 |
BIOUCAS-DIAS J M , PLAZA A , CAMPS-VALLS G , et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (2): 6- 36.
doi: 10.1109/MGRS.2013.2244672 |
13 | TU B , HUANG S Y , FANG L , et al. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 1- 13. |
14 |
ZHANG H , LI J , HUANG Y , et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6): 2056- 2065.
doi: 10.1109/JSTARS.2013.2264720 |
15 | 陈善学, 周艳发, 漆若兰. 基于核函数的联合稀疏表示高光谱图像分类[J]. 系统工程与电子技术, 2018, 40 (3): 692- 698. |
CHEN S X , ZHOU Y F , QI R L . Joint sparse representation of hyperspectral image classification based on Kernel function[J]. Systems Engineering and Electronices, 2018, 40 (3): 692- 698. | |
16 |
AHARON M , ELAD M , BRUCKSTEIN A . K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans.on Signal Processing, 2006, 54, 4311- 4322.
doi: 10.1109/TSP.2006.881199 |
17 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
18 | TIBSHIRANI R J . Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society (Series B: Methodological), 1996, 73 (1): 273- 282. |
19 |
WRIGHT S J , NOWAK R D , FIGUEIREDO M A T . Sparse reconstruction by separable approximation[J]. IEEE Trans.on Signal Processing, 2009, 57 (7): 2479- 2493.
doi: 10.1109/TSP.2009.2016892 |
20 |
CUI M , PRASAD S . Class-dependent sparse representation classifier for robust hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (5): 2683- 2695.
doi: 10.1109/TGRS.2014.2363582 |
21 | 陈善学, 桂成名, 王一宁, 等. 基于紧耦合像元的自适应增强类内稀疏表示高光谱图像分类[J]. 系统工程与电子技术, 2017, 39 (3): 655- 661. |
CHEN S X , GUI C M , WANG Y N , et al. Close coupled set of pixels-based adaptive boosting class-wise sparse representation classifier for robust hyperspectral image classification[J]. and Electronices, 2017, 39 (3): 655- 661. |
[1] | Haowei CHANG, Chunlei PANG, Zehui GUO, Liang ZAHNG, Minmin LYU, Chuang ZHANG. Spoofing signal detection method based on adaptive immunity algorithm [J]. Systems Engineering and Electronics, 2022, 44(8): 2419-2426. |
[2] | Yuanyi XIONG, Wenchong XIE. Adaptive iterative monopulse estimation method based on space-time constraint [J]. Systems Engineering and Electronics, 2022, 44(8): 2506-2514. |
[3] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
[4] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG, Zhijun LI. Adaptive beamforming based on new steepest descent algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2104-2111. |
[5] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[6] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[7] | Fa WEI, Minglei YANG, Xiaojing HE, Dingsen ZHOU, Baixiao CHEN. Simultaneous multi-beam forming method for planar array based on improved particle swarm algorithm [J]. Systems Engineering and Electronics, 2022, 44(6): 1789-1797. |
[8] | Jiangmei CHEN, Wende ZHANG. Point-of-interest recommendation algorithm based on grey relational analysis and temporal-spatial preference feature [J]. Systems Engineering and Electronics, 2022, 44(6): 1934-1941. |
[9] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
[10] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. |
[11] | Shibin LUO, Xiaodong LI, Zhongsen WANG, Cheng XU. Generalized super-twisting finite-time control for the ascent phase of parallel carrier [J]. Systems Engineering and Electronics, 2022, 44(5): 1626-1635. |
[12] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
[13] | Yuan LI, Xianming SHI, Yajuan LI, Mei ZHAO. Decision method of operational target attribute based on Adaboost [J]. Systems Engineering and Electronics, 2022, 44(4): 1256-1262. |
[14] | Tong AN, Peng WANG, Jianhua WANG, Guojian TANG, Yulong PAN, Haishan CHEN. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2022, 44(3): 956-966. |
[15] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||