Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (8): 2506-2514.doi: 10.12305/j.issn.1001-506X.2022.08.15
• Sensors and Signal Processing • Previous Articles Next Articles
Yuanyi XIONG*, Wenchong XIE
Received:2021-05-25
Online:2022-08-01
Published:2022-08-24
Contact:
Yuanyi XIONG
CLC Number:
Yuanyi XIONG, Wenchong XIE. Adaptive iterative monopulse estimation method based on space-time constraint[J]. Systems Engineering and Electronics, 2022, 44(8): 2506-2514.
Table 5
Comparison of standard deviation of multi-objective angles (°)"
| 目标 | 噪声背景 | Fante方法 | Nickel方法 | Xu方法 | 本文方法 |
| 目标1 | 0.105 | 18.713 | 3.147 | 1.515 | 2.530 |
| 目标2 | 0.100 | 2.035 | 0.342 | 0.814 | 0.012 |
| 目标3 | 0.105 | 0.917 | 0.154 | 0.545 | 0.108 |
| 目标4 | 0.101 | 2.406 | 0.405 | 0.795 | 0.101 |
| 目标5 | 0.096 | 0.937 | 0.158 | 0.807 | 0.125 |
| 目标6 | 0.101 | 0.582 | 0.098 | 0.971 | 0.079 |
| 目标7 | 0.105 | 1.082 | 0.182 | 0.515 | 0.138 |
| 目标8 | 0.100 | 0.608 | 0.102 | 0.911 | 0.082 |
| 目标9 | 0.105 | 0.446 | 0.075 | 1.512 | 0.060 |
Table 6
Comparison of standard deviation of multi-target normalized Doppler frequency (°)"
| 目标 | 噪声背景 | Fante方法 | Nickel方法 | Xu方法 | 本文方法 |
| 目标1 | 9.186×10-4 | 0.140 | 0.179 | 0.013 | 0.022 |
| 目标2 | 8.707×10-4 | 0.015 | 0.020 | 0.007 | 1.030×10-4 |
| 目标3 | 9.186×10-4 | 0.007 | 0.009 | 0.005 | 9.418×10-4 |
| 目标4 | 8.819×10-4 | 0.018 | 0.023 | 0.007 | 8.802×10-4 |
| 目标5 | 8.359×10-4 | 0.007 | 0.009 | 0.007 | 0.001 |
| 目标6 | 8.819×10-4 | 0.004 | 0.006 | 0.008 | 6.861×10-4 |
| 目标7 | 9.186×10-4 | 0.008 | 0.010 | 0.005 | 0.001 |
| 目标8 | 8.707×10-4 | 0.005 | 0.006 | 0.008 | 7.175×10-4 |
| 目标9 | 9.186×10-4 | 0.003 | 0.004 | 0.013 | 5.263×10-4 |
| 1 |
LIU W J , LIU J , HAO C P , et al. Multichannel adaptive signal detection: basic theory and literature review[J]. Science China: Information Sciences, 2021,
doi: 10.1007/s11432-020-3211-8 |
| 2 |
CHEN G , WANG J . Target detection method in passive bistatic radar[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 510- 519.
doi: 10.23919/JSEE.2020.000021 |
| 3 |
ZEFREH R G , TABAN M R , NAGHSH M M , et al. Robust CFAR detector based on censored harmonic averaging in heterogeneous clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (3): 1956- 1963.
doi: 10.1109/TAES.2020.3046050 |
| 4 | GE B B, CHEN L P, AN D X, et al. Parameter estimation of moving target in dual-channel circular synthetic aperture radar[C]// Proc. of the IEEE Asia-Pacific Microwave Conference, 2019, 1381-1383. |
| 5 | MONTLOUIS W. Rapidly moving target parameter estimation using phased array radars[C]//Proc. of the International Conference on Telecommunications and Signal Processing, 2020: 523-527. |
| 6 | XU H, PENG Y N, WAN Q, et al. Doppler parameter estimation of airborne radar based on a novel clutter model[C]//Proc. of the IEEE Radar Conference, 2004: 329-332. |
| 7 |
LI Y K , WANG Y L , LIU B C , et al. A new motion parameter estimation and relocation scheme for airborne three-channel CSSAR-GMTI systems[J]. IEEE Trans.on Geoscience and Remote sensing, 2019, 57 (6): 4107- 4120.
doi: 10.1109/TGRS.2019.2894620 |
| 8 |
ZHANG X W , LIAO G S , YANG Z W , et al. Parameter estimation based on Hough transform for airborne radar with conformal array[J]. Digital Signal Processing, 2020,
doi: 10.1016/j.dsp.2020.102869 |
| 9 | SKOLNIK M I . Radar handbook[M]. 2nd ed New York: McGraw-Hill, 1990. |
| 10 | SHERMAN S M . Monopulse principles and techniques[M]. Dedham Ma: Artech House, 1984. |
| 11 | LEONOV A I, FOMICHEV K I. Monopulse radar[R]. NASA Technical Report A, 1986. |
| 12 |
NICKEL U . Performance of corrected adaptive monopulse estimation[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146 (1): 17- 24.
doi: 10.1049/ip-rsn:19990257 |
| 13 |
NICKEL U , CHAUMETTE E , LARZABAL P . Estimation of extended target using the generalized monopulse estimator: extension to a mixed target model[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (3): 2084- 2096.
doi: 10.1109/TAES.2013.6558043 |
| 14 | WU R B , SU Z G , WANG L . Space-time adaptive monopulse processing for airborne radar in non-homogeneous environments[J]. AEU International Journal of Electronics and Communications, 2011, 65 (5): 258- 264. |
| 15 |
NICKEL U , CHAUMETTE E , LARZABAL P . Statistical performance prediction of generalized monopulse estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (1): 381- 404.
doi: 10.1109/TAES.2011.5705682 |
| 16 | WARD J. Cramér-Rao bounds for target angle and Doppler estimation with space-time adaptive radar[C]//Proc. of the IEEE Conference on Signals, Systems & Computers, 1995: 1198-1203. |
| 17 |
DOGANDZIC A , NEHORAI A . Cramer-Rao bounds for estimating range, velocity, and direction with an active array[J]. IEEE Trans.on Signal Processing, 2001, 49 (6): 1122- 1137.
doi: 10.1109/78.923295 |
| 18 |
STOICA P , LARSSON E G , GERSHMAN A B . The stochastic CRB for array processing: a textbook derivation[J]. IEEE Signal Processing Letters, 2001, 8 (5): 148- 150.
doi: 10.1109/97.917699 |
| 19 |
NICKEL U . Overview of generalized monopulse estimation[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21 (6): 27- 56.
doi: 10.1109/MAES.2006.1662039 |
| 20 | FANTE R . Synthesis of adaptive monopulse patterns[J]. IEEE Trans.on Antennas and Propagation, 1999, 35 (5): 773- 774. |
| 21 |
陈功, 谢文冲, 王永良. 基于空时联合约束的机载雷达STAP单脉冲角度估计方法[J]. 电子学报, 2015, 43 (3): 489- 495.
doi: 10.3969/j.issn.0372-2112.2015.03.011 |
|
CHEN G , XIE W C , WANG Y L , et al. Space-time adaptive monopulse angle estimation approach for airborne radar based on space-time joint constraint[J]. Acta Electronica Sinica, 2015, 43 (3): 489- 495.
doi: 10.3969/j.issn.0372-2112.2015.03.011 |
|
| 22 | 李永伟, 谢文冲. 端射阵机载雷达STAP单脉冲测角方法[J]. 系统工程与电子技术, 2020, 42 (2): 322- 330. |
| LI Y W , XIE W C . Monopulse angle estimation method for end-fire array airborne radar based on STAP[J]. Systems Engineering and Electronics, 2020, 42 (2): 322- 330. | |
| 23 |
XU J W , WANG C H , LIAO G S , et al. Sum and difference beamforming for angle Doppler estimation with STAP-based radars[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (6): 2825- 2837.
doi: 10.1109/TAES.2016.150728 |
| 24 | RANGASWAMY M. An overview of space-time adaptive processing for radar[C]//Proc. of the IEEE International Conference on Radar, 2003: 45-50. |
| 25 |
MELVIN W L . A STAP overview[J]. IEEE Aerospace and Electronics Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229 |
| 26 |
LAPIERRE F D , VERLY J G . Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (3): 1084- 1099.
doi: 10.1109/TAES.2007.4383596 |
| 27 | LI X Z , XIE W C , WANG Y L . Clutter suppression algorithm for non-side looking airborne radar with high pulse repetition frequency based on elevation-compensation-prefiltering[J]. IET Radar, Sonar & Navigation, 2020, 14 (8): 19- 26. |
| 28 | 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6 (6): 575- 586. |
| XIE W C , DUAN K Q , WANG Y L . Space time adaptive processing technique for airborne radar: an overview of its development and prospects[J]. Journal of Radars, 2017, 6 (6): 575- 586. | |
| 29 | 伍勇, 汤俊, 彭应宁. 雷达系统杂波自由度研究[J]. 电子与信息学报, 2008, 30 (5): 1032- 1036. |
| WU Y , TANG J , PENG Y N . On clutter degrees of freedom of the radar system[J]. Journal of Electronics & Information Technology, 2008, 30 (5): 1032- 1036. | |
| 30 | NICKEL U . Monopulse estimation with subarray-adaptive arrays and arbitrary sum and difference beams[J]. IET Radar, Sonar & Navigation, 1996, 143 (4): 232- 238. |
| [1] | Yili HU, Yongbo ZHAO, Sheng CHEN, Ben NIU. Decoherence of conformal electromagnetic vector sensor array by double interpolation fitting method [J]. Systems Engineering and Electronics, 2022, 44(8): 2393-2402. |
| [2] | Haowei CHANG, Chunlei PANG, Zehui GUO, Liang ZAHNG, Minmin LYU, Chuang ZHANG. Spoofing signal detection method based on adaptive immunity algorithm [J]. Systems Engineering and Electronics, 2022, 44(8): 2419-2426. |
| [3] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
| [4] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG, Zhijun LI. Adaptive beamforming based on new steepest descent algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2104-2111. |
| [5] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
| [6] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
| [7] | Fa WEI, Minglei YANG, Xiaojing HE, Dingsen ZHOU, Baixiao CHEN. Simultaneous multi-beam forming method for planar array based on improved particle swarm algorithm [J]. Systems Engineering and Electronics, 2022, 44(6): 1789-1797. |
| [8] | Jiangmei CHEN, Wende ZHANG. Point-of-interest recommendation algorithm based on grey relational analysis and temporal-spatial preference feature [J]. Systems Engineering and Electronics, 2022, 44(6): 1934-1941. |
| [9] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
| [10] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. |
| [11] | Shibin LUO, Xiaodong LI, Zhongsen WANG, Cheng XU. Generalized super-twisting finite-time control for the ascent phase of parallel carrier [J]. Systems Engineering and Electronics, 2022, 44(5): 1626-1635. |
| [12] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
| [13] | Yuan LI, Xianming SHI, Yajuan LI, Mei ZHAO. Decision method of operational target attribute based on Adaboost [J]. Systems Engineering and Electronics, 2022, 44(4): 1256-1262. |
| [14] | Yan JIN, Dadi ZHAO, Hongbing JI. Parameter estimation of LFM signals based on NAT functions in impulsive noise [J]. Systems Engineering and Electronics, 2022, 44(3): 762-770. |
| [15] | Tong AN, Peng WANG, Jianhua WANG, Guojian TANG, Yulong PAN, Haishan CHEN. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2022, 44(3): 956-966. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||