Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (7): 2237-2245.doi: 10.12305/j.issn.1001-506X.2025.07.17
• Systems Engineering • Previous Articles
Jingru ZHANG1,*, Zhigeng FANG1, Yunke SUN2, Shuang WU1, Ding CHEN3
Received:
2023-11-13
Online:
2025-07-16
Published:
2025-07-22
Contact:
Jingru ZHANG
CLC Number:
Jingru ZHANG, Zhigeng FANG, Yunke SUN, Shuang WU, Ding CHEN. MS-GERT model for effectiveness evaluation of multi-stage offensive and defensive adversarial system-of-systems[J]. Systems Engineering and Electronics, 2025, 47(7): 2237-2245.
Table 1
Simulation parameters"
(i, j) | 活动 | 效能 | 时间分布 | 矩母函数 | 传递函数 |
(0, 1) | 预警卫星侦察威胁目标 | 0.4 | N(0.85, 0.03) | e0.85s+0.03s2 | 0.4e0.85s+0.03s2 |
(0, 3) | 目标搜索雷达侦察威胁目标 | 0.5 | N(0.7, 0.03) | e0.7s+0.03s2 | 0.5e0.7s+0.03s2 |
(0, 10) | 未侦察到目标 | 0.1 | N(0.6, 0.07) | e0.6s+0.07s2 | 0.1e0.6s+0.07s2 |
(1, 2) | 预警卫星将目标信息传送至预警机 | 0.4 | N(0.65, 0.01) | e0.65s+0.01s2 | 0.4e0.65s+0.01s2 |
(1, 10) | 预警卫星未能成功传送目标信息 | 0.6 | N(0.8, 0.02) | e0.8s+0.02s2 | 0.6e0.8s+0.02s2 |
(2, 4) | 预警机将目标信息传送至指控中心 | 0.8 | N(0.65, 0.05) | e0.65s+0.05s2 | 0.8e0.65s+0.05s2 |
(2, 10) | 预警机未能成功传送目标信息 | 0.2 | N(0.8, 0.03) | e0.8s+0.03s2 | 0.2e0.8s+0.03s2 |
(3, 4) | 目标搜索雷达将目标信息传送至指控中心 | 0.8 | N(0.7, 0.05) | e0.7s+0.05s2 | 0.8e0.7s+0.05s2 |
(3, 10) | 目标搜索雷达未能成功传送目标信息 | 0.2 | N(0.75, 0.06) | e0.75s+0.06s2 | 0.2e0.75s+0.06s2 |
(4, 5) | 指控中心下令作战 | 0.7 | N(0.6, 0.07) | e0.6s+0.07s2 | 0.7e0.6s+0.07s2 |
(4, 10) | 指控中心未下令作战 | 0.3 | N(0.8, 0.01) | e0.8s+0.01s2 | 0.3e0.8s+0.01s2 |
(5, 5) | 导弹发射失败, 再次发射 | 0.3 | N(0.65, 0.02) | e0.65s+0.02s2 | 0.3e0.65s+0.02s2 |
(5, 6) | 导弹发射车发射导弹成功 | 0.7 | N(0.6, 0.04) | e0.6s+0.04s2 | 0.7e0.6s+0.04s2 |
(6, 7) | 导弹击中目标 | 0.9 | N(0.7, 0.02) | e0.7s+0.02s2 | 0.9e0.7s+0.02s2 |
(6, 8) | 导弹未击中目标 | 0.1 | N(0.8, 0.03) | e0.8s+0.03s2 | 0.1e0.8s+0.03s2 |
(7, 9) | 防御作战任务成功 | 1 | N(0.9, 0.01) | e0.9s+0.01s2 | e0.9s+0.01s2 |
(8, 5) | 导弹击中未目标, 启动下一次发射 | 1 | 0 | 1 | 1 |
1 | SERVI L D , GARVEY P R . Deriving global criticality conditions from local dependencies using functional dependency network analysis (FDNA)[J]. Systems Engineering, 2017, 20 (4): 297- 306. |
2 |
李智, 吕铁鑫, 潘艳辉. 联合全域作战智能博弈优化一体化决策问题[J]. 火力与指挥控制, 2023, 48 (3): 1- 8.
doi: 10.3969/j.issn.1002-0640.2023.03.001 |
LI Z , LYU T X , PAN Y H . Research on integrated decision-making problems of intelligent game optimization in JADO[J]. Fire Control & Command Control, 2023, 48 (3): 1- 8.
doi: 10.3969/j.issn.1002-0640.2023.03.001 |
|
3 | MAIERE M W . Architecting principles for systems-of-systems[J]. Systems Engineering: The Journal of the International Council on Systems Engineering, 1998, 1 (4): 267- 284. |
4 | 张子伟, 郭齐胜, 董志明, 等. 体系作战效能评估与优化方法综述[J]. 系统仿真学报, 2022, 34 (2): 303- 313. |
ZHANG Z W , GUO Q S , DONG Z M , et al. Review of system of systems combat effectiveness evaluation and optimization methods[J]. Journal of System Simulation, 2022, 34 (2): 303- 313. | |
5 | WANG Z , LIU S F , FANG Z G . Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2019, 14 (3): 4188- 4196. |
6 | GAO Y , CHENG J Y , TIAN Y L , et al. Machine learning-based evaluation of the contribution effectiveness in SoS missions[J]. IEEE Systems Journal, 2023, 17 (4): 5877- 5888. |
7 | 钟季龙, 郭基联. 空中远程作战体系效能评估的组合分析方法[J]. 系统工程, 2015, 33 (11): 140- 145. |
ZHONG J L , GUO J L . The portfolio-analysis methods for as sessing effectiveness of system of long-range operation system[J]. System Engineering, 2015, 33 (11): 140- 145. | |
8 |
马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44 (6): 1889- 1896.
doi: 10.12305/j.issn.1001-506X.2022.06.15 |
MA J , YANG J Y , WU X . Evaluation of operational system of systems effectiveness based on pre-clustering active semi-supervised learning[J]. Systems Engineering and Electronics, 2022, 44 (6): 1889- 1896.
doi: 10.12305/j.issn.1001-506X.2022.06.15 |
|
9 | SHAO R R , FANG Z G , TAO L Y , et al. A comprehensive G-LZ-ADC effectiveness evaluation model for the single communication satellite system in the context of poor information[J]. Grey Systems: Theory and Application, 2022, 12 (2): 417- 461. |
10 | XU R J , LIU X , CUI D H , et al. An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture[J]. Journal of Systems Engineering and Electronics, 2023, 34 (3): 574- 587. |
11 |
刘海洋, 胡晓峰, 刘戎翔, 等. 基于时序超网的作战体系效能指标动态测量方法[J]. 火力与指挥控制, 2020, 45 (4): 47- 58.
doi: 10.3969/j.issn.1002-0640.2020.04.009 |
LIU H Y , HU X F , LIU R X , et al. Dynamic measurement method of operation SoS effectiveness index based on sequential super-network[J]. Fire Control & Command Control, 2020, 45 (4): 47- 58.
doi: 10.3969/j.issn.1002-0640.2020.04.009 |
|
12 | FAN J R , LI D G , LI R P , et al. Analysis on MAV/UAV cooperative combat based on complex network[J]. Defence Technology, 2020, 16 (1): 150- 157. |
13 | WANG Z K , ZENG S K , GUO J B , et al. A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error[J]. Reliability Engineering & System Safety, 2021, 207, 107385. |
14 | 柳李鹏, 曹菲, 毋凡. 基于专家集成赋权-灰色聚类法的引信抗干扰效能评估[J]. 探测与控制学报, 2018, 40 (6): 7- 13. |
LIU L P , CAO F , WU F . Fuze anti-jamming efficiency evaluation based on expert integrated weighting and grey clustering method[J]. Journal of Detection & Control, 2018, 40 (6): 7- 13. | |
15 | HU X W, LUO P C, ZHANG X N, et al. Research on the effectiveness evaluation of big data in combat simulation[C]//Proc. of the 2nd International Conference on Big Data Research, 2018: 70-75. |
16 | LEE J , SHIN S , PARK M , et al. Agent-based simulation and its application to analyze combat effectiveness in network-cen tric warfare considering communication failure environments[J]. Mathematical Problems in Engineering, 2018, 2018 (1): 2730671. |
17 | CHEN L B , WANG C , ZENG C Y , et al. A novel method of heterogeneous combat network disintegration based on deep reinforcement learning[J]. Frontiers in Physics, 2022, 10, 1021245. |
18 | ZENG C Y , LIU H F , LU L N , et al. Shatter: searching hete-rogeneous combat network attack sequences through network embedding and reinforcement learning[J]. IEEE Systems Journal, 2023, 17 (3): 4497- 4508. |
19 | 马也, 范文慧, 常天庆. 基于智能算法的无人集群防御作战方案优化方法[J]. 兵工学报, 2022, 43 (6): 1415- 1425. |
MA Y , FAN W H , CHANG T Q . Optimization method of unmanned swarm defensive combat scheme based on intelligent algorithm[J]. Acta Armamentarii, 2022, 43 (6): 1415- 1425. | |
20 | 张国辉, 高昂, 张雅楠. 基于RLoMAG+EAS的同构集群装备体系作战效能评估方法[J]. 系统仿真学报, 2024, 36 (1): 160- 169. |
ZHANG G H , GAO A , ZHANG Y N . Combat effectiveness evaluation method of homogeneous cluster equipment system based on RLoMAG+EAS[J]. Journal of System Simulation, 2024, 36 (1): 160- 169. | |
21 | PRITSKER A A B , HAPP W W . GERT: graphical evaluation and review technique, Part Ⅰ: fundamental[J]. Journal of Industrial Engineering, 1966, 17 (5): 267- 274. |
22 | PRITSKER A A B . GERT networks[J]. Production Engineer, 1968, 47 (10): 499- 506. |
23 | AHMED A , KAYIS B , AMORNSAWADWATANA S . A review of techniques for risk management in projects[J]. Benchmarking: an International Journal, 2017, 14 (1): 22- 36. |
24 | KANNAN R . Graphical evaluation and review technique (GERT): the panorama in the computation and visualization of network-based project management[M]. New York: IGI Global Publishing, 2014. |
25 | FISHER D L , GOLDSTEIN W M . Stochastic PERT networks as models of cognition: derivation of the mean, variance, and distribution of reaction time using order-of-processing (OP) diagrams[J]. Journal of Mathematical Psychology, 1983, 27 (2): 121- 151. |
26 | KOSUGI T , HAYASHI A , MATSUMOTO T , et al. Time to realization: evaluation of CO2 capture technology R&Ds by GERT (graphical evaluation and review technique) analyses[J]. Energy, 2004, 29 (9): 1297- 1308. |
27 | NELSON R G , AZARON A , AREF S . The use of a GERT based method to model concurrent product development processes[J]. European Journal of Operational Research, 2016, 250 (2): 566- 578. |
28 | WANG X L , XU J H , ZHANG L , et al. Mission success probability optimizing of phased mission system balancing the phase backup and system risk: a novel GERT mechanism[J]. Reliability Engineering & System Safety, 2023, 236, 109311. |
29 | TAO L Y , WU D S , LIU S F , et al. Schedule risk analysis for new-product development: the GERT method extended by a characteristic function[J]. Reliability Engineering & System Safety, 2017, 167, 464- 473. |
30 | GENG S Y , LIU S F , FANG Z G . An agent-based algorithm for dynamic routing in service networks[J]. European Journal of Operational Research, 2022, 303 (2): 719- 734. |
31 |
方志耕, 夏悦馨, 张靖如, 等. 基于Agent的体系过程A-GERT网络"刺激-反应"学习模型[J]. 系统工程与电子技术, 2022, 44 (8): 2540- 2553.
doi: 10.12305/j.issn.1001-506X.2022.08.19 |
FANG Z G , XIA Y X , ZHANG J R , et al. A stimulus-response learning model for Agent-based system process A-GERT network[J]. Systems Engineering and Electronics, 2022, 44 (8): 2540- 2553.
doi: 10.12305/j.issn.1001-506X.2022.08.19 |
|
32 | 黄路炜, 毕义明, 杨继锋. 应急作战下导弹技术测试优化方法研究[J]. 系统仿真学报, 2007, 19 (6): 1347- 1350. |
HUANG L W , BI Y M , YANG J F . Research on optimal method of missile technical test in emergent battle[J]. Journal of System Simulation, 2007, 19 (6): 1347- 1350. | |
33 | ZHANG N , YAN S L , FANG Z G , et al. Fuzzy GERT model based on ztag and its application in weapon equipment management[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40 (6): 12503- 12519. |
34 | FANG Z G , WU S , ZHANG X L , et al. ADC-GERT network parameter estimation model for mission effectiveness of joint operation system[J]. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1394- 1406. |
35 | YU H Y , WU X Y , WU X Y . An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy[J]. Reliability Engineering & System Safety, 2020, 197, 106786. |
36 | HE Y H , CHEN Z X , ZHAO Y X , et al. Mission reliability evaluation for fuzzy multistate manufacturing system based on an extended stochastic flow network[J]. IEEE Trans.on Reliability, 2019, 69 (4): 1239- 1253. |
37 | WU D , YAN X B , PENG R , et al. Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets[J]. Reliability Engineering & System Safety, 2020, 196, 106778. |
[1] | Xiao YAN, Qingping WANG, Weidong HU, Hongyu ZHU, Chao WANG. Dynamic interference resource allocation method based on starling migration [J]. Systems Engineering and Electronics, 2025, 47(5): 1385-1394. |
[2] | Wen SUN, Juan CHENG, Yihao WANG, Kaichen CAO, Mengmeng GE, Liu HUANG, Geng ZHANG. Effectiveness analysis and modeling of ship target detection utilizing hyperspectral remote sensing satellites [J]. Systems Engineering and Electronics, 2025, 47(5): 1432-1442. |
[3] | Ding CHEN, Zhigeng FANG, Baohua YANG, Feng YE, Na ZHANG, Jingru ZHANG. Grey principal component analysis model of effectiveness evaluation for joint operation system-of-systems considering indicator synergism reconstruction [J]. Systems Engineering and Electronics, 2025, 47(5): 1561-1574. |
[4] | Xiaohan YAN, Hua CHAI, Qiangqiang XU. Effectiveness analysis of the US missile defense system based on kill-web evaluation [J]. Systems Engineering and Electronics, 2025, 47(4): 1235-1245. |
[5] | Zhangqiu YUAN, Zhaoxu YANG, Haijun RONG. Lightweight effectiveness evaluation method for high altitude airships for both qualitative and quantitative indicators [J]. Systems Engineering and Electronics, 2025, 47(3): 817-826. |
[6] | Wei HAN, Fang GUO, Yujie LIU, Xichao SU, Jie LIU. Evaluation method of operational effectiveness for aircraft carrier formation based on triangular fuzzy number and operation loop [J]. Systems Engineering and Electronics, 2025, 47(3): 893-903. |
[7] | Zhaodong WU, Yasong LUO, Shengliang HU, Zhong LIU, Lingang WU. Combined interference and assessment methods for multiple unmanned boat borne based offboard active decoys [J]. Systems Engineering and Electronics, 2024, 46(6): 1878-1891. |
[8] | Lisha ZHENG, Dongliang YIN, Xuan WANG. Operational effectiveness evaluation of phased array radar based on improved D-S evidence theory [J]. Systems Engineering and Electronics, 2024, 46(4): 1330-1336. |
[9] | Li MA, Peng SHI, Yu CHEN, Wenlong LI. Discrete event simulation and effectiveness evaluation of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(3): 906-913. |
[10] | Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG. Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method [J]. Systems Engineering and Electronics, 2024, 46(2): 561-569. |
[11] | Zhaodong WU, Shengliang HU, Yasong LUO, Zhong LIU, Jiawei XIA. Research on outboard active decoy jamming evaluation method based on probabilistic reasoning [J]. Systems Engineering and Electronics, 2024, 46(2): 605-615. |
[12] | Yu CHEN, Peng SHI, Li MA, Wenlong LI. Modeling and effectiveness evaluation method of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(10): 3407-3415. |
[13] | Zhigeng FANG, Chenchen HUA, Ding CHEN, Jingru ZHANG, Yadong ZHANG, Honghua WU. GERT network technology for reliability structure analysis and modeling of complex system-of-systems [J]. Systems Engineering and Electronics, 2024, 46(10): 3427-3436. |
[14] | Rui LI, Mengtao ZHU, Yunjie LI. Online evaluation method of radar jamming effect based on inverse filtering processing [J]. Systems Engineering and Electronics, 2023, 45(9): 2706-2717. |
[15] | Jiaping CAO, Mengxin OU, Yishan LI, Jiang JIANG, Jichao LI. Island air defense electronic countermeasure equipment system construction and effectiveness evaluation [J]. Systems Engineering and Electronics, 2023, 45(9): 2784-2792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||