Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1330-1336.doi: 10.12305/j.issn.1001-506X.2024.04.21
• Systems Engineering • Previous Articles Next Articles
Lisha ZHENG1, Dongliang YIN2, Xuan WANG3,*
Received:
2022-11-01
Online:
2024-03-25
Published:
2024-03-25
Contact:
Xuan WANG
CLC Number:
Lisha ZHENG, Dongliang YIN, Xuan WANG. Operational effectiveness evaluation of phased array radar based on improved D-S evidence theory[J]. Systems Engineering and Electronics, 2024, 46(4): 1330-1336.
Table 1
Initial evaluation set and weight results of secondary indicators"
指标 | 权重值 | 评语集 | ||||
θ1 | θ2 | θ3 | θ4 | θ5 | ||
U11 | 0.309 | 0.15 | 0.31 | 0.42 | 0.12 | 0.00 |
U12 | 0.433 | 0.18 | 0.63 | 0.15 | 0.04 | 0.00 |
U13 | 0.258 | 0.13 | 0.44 | 0.27 | 0.16 | 0.00 |
U21 | 0.094 | 0.15 | 0.35 | 0.29 | 0.11 | 0.10 |
U22 | 0.212 | 0.07 | 0.46 | 0.41 | 0.06 | 0.00 |
U23 | 0.255 | 0.12 | 0.32 | 0.38 | 0.18 | 0.00 |
U24 | 0.306 | 0.05 | 0.23 | 0.33 | 0.34 | 0.05 |
U25 | 0.133 | 0.0 | 0.24 | 0.22 | 0.54 | 0.00 |
U31 | 0.373 | 0.15 | 0.36 | 0.28 | 0.21 | 0.00 |
U32 | 0.123 | 0.12 | 0.22 | 0.28 | 0.29 | 0.09 |
U33 | 0.148 | 0.00 | 0.11 | 0.34 | 0.48 | 0.07 |
U34 | 0.207 | 0.07 | 0.36 | 0.31 | 0.22 | 0.04 |
U35 | 0.149 | 0.08 | 0.37 | 0.33 | 0.16 | 0.06 |
U41 | 0.211 | 0.04 | 0.27 | 0.51 | 0.18 | 0.00 |
U42 | 0.427 | 0.16 | 0.39 | 0.10 | 0.35 | 0.00 |
U43 | 0.362 | 0.04 | 0.67 | 0.14 | 0.13 | 0.02 |
U51 | 0.534 | 0.30 | 0.26 | 0.21 | 0.15 | 0.08 |
U52 | 0.466 | 0.19 | 0.47 | 0.18 | 0.12 | 0.04 |
Table 2
Synthesis results of mass function values for primary indicators"
对象 | 评语集 | ||||
优秀 | 良好 | 中等 | 一般 | 差 | |
预警探测能力U1 | 0.157 83 | 0.482 10 | 0.264 39 | 0.095 68 | 0 |
情报处理能力U2 | 0.074 84 | 0.314 32 | 0.341 32 | 0.244 82 | 0.024 70 |
指挥控制能力U3 | 0.097 12 | 0.307 27 | 0.302 54 | 0.254 42 | 0.038 65 |
战场生存能力U4 | 0.091 24 | 0.466 04 | 0.200 99 | 0.234 49 | 0.007 24 |
系统可靠性U5 | 0.248 74 | 0.357 86 | 0.196 02 | 0.136 02 | 0.061 36 |
1 |
ZOU H B , WU S S , TIAN M X . Radar quantitative precipitation estimation based on the gated recurrent unit neural network and echo-top data[J]. Advances in Atmospheric Sciences, 2023, 40 (6): 1043- 1057.
doi: 10.1007/s00376-022-2127-x |
2 |
KATSILIERIS F , KRACH B . Cross-platform radar resource management for coordinated search and tracking[J]. IEEE Aero-space and Electronic Systems Magazine, 2022, 37 (4): 22- 29.
doi: 10.1109/MAES.2021.3052312 |
3 | LI J C , GOU S P , LI R M , et al. Ship segmentation via encoder-decoder network with global attention in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4016605. |
4 | WANG D C, ZHANG F, MA F, et al. SAD: a large-scale dataset towards airport detection in synthetic aperture radar images[EB/OL]. [2022-10-20]. http://arxiv.org/abs/2204.00790v2. |
5 | JAGADESH T , RANI B . Modeling target detection and performance analysis of electronic countermeasures for phased radar[J]. Intelligent Automation & Soft Computing, 2022, 35 (1): 449- 463. |
6 | 邵春生. 相控阵雷达研究现状与发展趋势[J]. 现代雷达, 2016, 38 (6): 1- 4. |
SHAO C S . Study status and development trend of phased array radar[J]. Modern Radar, 2016, 38 (6): 1- 4. | |
7 | 窦晓杰, 王小平, 廖善良. 基于ADC方法的通信装备保障效能评估[J]. 火力与指挥控制, 2016, 41 (7): 110- 113. |
DOU X J , WANG X P , LIAO S L . Research on effectiveness evaluation model of communication equipment support system based on ADC method[J]. Fire Control & Command Control, 2016, 41 (7): 110- 113. | |
8 | 王强, 周怀军. 基于AHP算法的相控阵雷达系统效能评估[J]. 舰船电子对抗, 2009, 32 (3): 81- 85. |
WANG Q , ZHOU H J . Efficiency evaluation based on AHP algorithm for phased array radar system[J]. Shipboard Electronic Counter Measure, 2009, 32 (3): 81- 85. | |
9 | 王振全, 欧阳中辉. 基于模糊综合评判的雷达抗干扰效能评估研究[J]. 舰船电子工程, 2010, 30 (3): 106-108, 128. |
WANG Z Q , OUYANG Z H . Efficiency evaluation of radar eccm based on fuzzy integrated estimation[J]. Ship Electronic Engineering, 2010, 30 (2): 106-108, 128. | |
10 | 何胜杰, 郭强, 王兴虎, 等. 基于ADC分析法优化的无人机效能评估方法[J]. 无人系统技术, 2022, 5 (2): 106- 116. |
HE S J , GUO Q , WANG X H , et al. UAV performance eva-luation method optimized based on ADC analysis method[J]. Unmanned Systems Technology, 2022, 5 (2): 106- 116. | |
11 | 林志强, 樊斌斌, 王磊. 基于模糊聚类分析的相控阵雷达效能评估[J]. 电子信息对抗技术, 2020, 35 (3): 64- 67. |
LIN Z Q , FAN B B , WANG L . Effectiveness evaluation of phased array radar based on fuzzy clustering analysis[J]. Electronic Information Warfare Technology, 2020, 35 (3): 64- 67. | |
12 | 项磊, 杨新, 张扬, 等. 基于层次分析法与模糊理论的卫星效能评估[J]. 计算机仿真, 2013, 30 (2): 55- 61. |
XIANG L , YANG X , ZHANG Y , et al. Effectiveness evaluation for satellite system based on analytic hierarchy process and fuzzy theory[J]. Computer Simulation, 2013, 30 (2): 55- 61. | |
13 | 王帅杰, 何俊, 王斌, 等. 基于改进模糊层次分析法的相控阵雷达效能评估[J]. 火力与指挥控制, 2015, 40 (2): 90- 93. |
WANG S J , HE J , WANG B , et al. An effectiveness evaluation research of phased array radar based on improved fuzzy AHP[J]. Fire Control & Command Control, 2015, 40 (2): 90- 93. | |
14 |
LIU H C , LIU L , LIN Q L . Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology[J]. IEEE Trans.on Reliability, 2013, 62 (1): 23- 36.
doi: 10.1109/TR.2013.2241251 |
15 |
XIAO F Y . An improved method for combining conflicting evidences based on the similarity measure and belief function entropy[J]. International Journal of Fuzzy Systems, 2018, 20 (4): 1256- 1266.
doi: 10.1007/s40815-017-0436-5 |
16 |
XIAO F Y . A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion technique for fault diagnosis[J]. Sensors, 2017, 17 (11): 2504- 2524.
doi: 10.3390/s17112504 |
17 |
DU Y X , LU X , SU X Y , et al. New failure mode and effects analysis: an evidential downscaling method[J]. Quality and Reliability Engineering International, 2016, 32 (2): 737- 746.
doi: 10.1002/qre.1753 |
18 |
CHENG G , CHEN X H , SHAN X L , et al. A new method of gear fault diagnosis in strong noise based on multi-sensor information fusion[J]. Journal of Vibration and Control, 2016, 22 (6): 1504- 1515.
doi: 10.1177/1077546314542187 |
19 |
DENG X Y , DENG Y . D-AHP method with different credibility of information[J]. Soft Computing, 2019, 23 (2): 683- 691.
doi: 10.1007/s00500-017-2993-9 |
20 |
YAGER R R , ALAJLAN N . Dempster-Shafer belief structures for decision making under uncertainty[J]. Knowledge-Based Systems, 2015, 80, 58- 66.
doi: 10.1016/j.knosys.2014.12.031 |
21 |
DENG X Y , JIANG W . An evidential axiomatic design approach for decision making using the evaluation of belief structure satisfaction to uncertain target values[J]. International Journal of Intelligent Systems, 2018, 33 (1): 15- 32.
doi: 10.1002/int.21929 |
22 |
KABIR G , TESFAMARIAM S , FRANCISQUE A , et al. Evaluating risk of water mains failure using a Bayesian belief network model[J]. European Journal of Operational Research, 2015, 240 (1): 220- 234.
doi: 10.1016/j.ejor.2014.06.033 |
23 |
ZHENG X L , DENG Y . Dependence assessment in human reliability analysis based on evidence credibility decay model and IOWA operator[J]. Annals of Nuclear Energy, 2018, 112, 673- 684.
doi: 10.1016/j.anucene.2017.10.045 |
24 |
FEI L G , DENG Y , HU Y . DS-VIKOR: a new multi-criteria decision-making method for supplier selection[J]. International Journal of Fuzzy Systems, 2019, 21 (1): 157- 175.
doi: 10.1007/s40815-018-0543-y |
25 |
MA J B , LIU W R , MILLER P , et al. An evidential fusion approach for gender profiling[J]. Information Sciences, 2016, 333, 10- 20.
doi: 10.1016/j.ins.2015.11.011 |
26 | 石福丽, 朱一凡, 李超, 等. 军事通信网络效能评估中的多数据源融合方法[J]. 火力与指挥控制, 2012, 37 (7): 18- 23. |
SHI F L , ZHU Y F , LI C , et al. Multiple data sources fusion method for effectiveness evaluation of military communication network[J]. Fire Control & Command Control, 2012, 37 (7): 18- 23. | |
27 | 杨米, 陈建忠, 牛英滔. 基于云模型与证据理论的通信电子防御效能评估[J]. 计算机工程, 2017, 43 (6): 40-45, 52. |
YANG M , CHEN J Z , NIU Y T . Evaluation of communication electronic defense effectiveness based on cloud model and evidence theory[J]. Computer Engineering, 2017, 43 (6): 40-45, 52. | |
28 | 杨文平. 基于DS-GRA机载雷达组网资源管理效能评估[J]. 指挥控制与仿真, 2018, 40 (1): 80- 85. |
YANG W P . Effectiveness evaluation of airborne netted radar resource management based on DS-GRA[J]. Command Control & Simulation, 2018, 40 (1): 80- 85. | |
29 | DI P , WANG X , CHEN T , et al. Multisensor data fusion in testability evaluation of equipment[J]. Mathematical Problems in Engineering, 2020, 2020 (43): 1- 16. |
30 | DENG Y. Deng entropy: a generalized Shannon entropy to measure uncertainty[EB/OL]. [2022-10-20]. http://rxiv.org/abs/1502.0222. |
31 |
SINGH P , DHIMAN G . Uncertainty representation using fuzzy-entropy approach: special application in remotely sensed high-resolution satellite images (RSHRSIs)[J]. Applied Soft Computing, 2018, 72, 121- 139.
doi: 10.1016/j.asoc.2018.07.038 |
32 | 王旋, 狄鹏, 尹东亮. 基于Lance距离和信度熵的冲突证据融合方法[J]. 系统工程与电子技术, 2022, 44 (2): 592- 602. |
WANG X , DI P , YIN D L . Conflict evidence fusion method based on Lance distance and credibility entropy[J]. Systems Engineering and Electronics, 2022, 44 (4): 592- 602. | |
33 |
DEMPSTER A P . Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38 (2): 325- 339.
doi: 10.1214/aoms/1177698950 |
[1] | Wenjuan REN, Zhanpeng YANG, Guangluan XU, Kun FU. Fusion calculation model of sea moving target identity confidence [J]. Systems Engineering and Electronics, 2023, 45(4): 1082-1089. |
[2] | Yukun CHEN, Hui YU, Ningyun LU. Fault diagnosis of radar T/R module based on semi-supervised deep learning [J]. Systems Engineering and Electronics, 2023, 45(10): 3329-3337. |
[3] | Kang LIU, Minghao HE, Jun HAN, Geng WANG. A high conflict evidence fusion method based on eigenvector and Jousselme distance [J]. Systems Engineering and Electronics, 2022, 44(7): 2175-2180. |
[4] | Zhanling WANG, Chen PANG, Jiapeng YIN, Yongzhen LI, Xuesong WANG. Polarization control method for wideband phased array based on polarization state configuration [J]. Systems Engineering and Electronics, 2022, 44(3): 795-801. |
[5] | Wenge XING, Chuanrui ZHOU, Cheng ZHOU. Research on key technology of detection and communication integration for phased array radar [J]. Systems Engineering and Electronics, 2022, 44(10): 3053-3058. |
[6] | Wei JIANG, Wen SHENG, Wei QI, Shihua LIU. Survey on maintenance decision of large-scale phased array radar's T/R module [J]. Systems Engineering and Electronics, 2022, 44(1): 127-138. |
[7] | Ao LIU, Zheng ZHOU, Shuangming LI. Phased array radar recognition method based on optimized sequence extraction [J]. Systems Engineering and Electronics, 2021, 43(3): 656-665. |
[8] | Jisan LI, Wenbin CAI, Lixiang GENG, Rong LIU, Yuan REN. Variable date rate target tracking algorithm for rotating phased array radar [J]. Systems Engineering and Electronics, 2021, 43(3): 676-683. |
[9] | Wei CHEN, Jijian ZHANG, Wenchong XIE, Yongliang WANG. Research on smart jamming signal model and suppression method for airborne phased array radar [J]. Systems Engineering and Electronics, 2021, 43(2): 343-350. |
[10] | Zhizhong LIAO, Qi WANG. Influence and countermeasures of radar seeker pointing error on missile guidance [J]. Systems Engineering and Electronics, 2021, 43(2): 519-525. |
[11] | Chi HAN, Wei XIONG. Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer [J]. Systems Engineering and Electronics, 2021, 43(10): 2902-2910. |
[12] | Yan LI, Yunxiang CHEN, Chengkun LUO, Zhongyi CAI. Multi-attribute decision making method based on probabilistic hesitant-intuitionistic fuzzy entropy and evidential reasoning [J]. Systems Engineering and Electronics, 2020, 42(5): 1116-1123. |
[13] | Lin ZHANG, Yicheng JIANG. Imaging of moving surface ships based on velocity synthetic aperture radar [J]. Systems Engineering and Electronics, 2020, 42(1): 45-51. |
[14] | XIA Liang, YANG Jiangping, CHANG Chunhe, WANG An’an. Safety study of large phased array radar software system [J]. Systems Engineering and Electronics, 2019, 41(8): 1755-1762. |
[15] | ZHANG Liang, WANG Jianhao, Zheng Dongliang, CHE Fei, SHI Chao, MAO Hongbao. Equipment material supplier selection decision making based on intuitionistic fuzzy entropy and VIKOR [J]. Systems Engineering and Electronics, 2019, 41(7): 1568-1575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||