Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (3): 817-826.doi: 10.12305/j.issn.1001-506X.2025.03.14
• Systems Engineering • Previous Articles
Zhangqiu YUAN1,2,3, Zhaoxu YANG1,2,3, Haijun RONG1,2,3,*
Received:
2024-02-20
Online:
2025-03-28
Published:
2025-04-18
Contact:
Haijun RONG
CLC Number:
Zhangqiu YUAN, Zhaoxu YANG, Haijun RONG. Lightweight effectiveness evaluation method for high altitude airships for both qualitative and quantitative indicators[J]. Systems Engineering and Electronics, 2025, 47(3): 817-826.
Table 2
Data on high altitude airships of various models"
效能评估指标 | 型号数据 | |||||||||||||||||||||
准则层 | 指标层 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
飞艇平台性能 | 机动性能 | 49.4 | 51.3 | 112 | 55.3 | 109.8 | 109.9 | 133.8 | 73.4 | 109.7 | 127.5 | 72.1 | 88.9 | 63.2 | 105.5 | 129.1 | 85.3 | 147.9 | 48.7 | 88.7 | 144.1 | |
巡航速度/(km/h) | 29.6 | 30.5 | 61.4 | 32 | 58.6 | 58.8 | 72.3 | 41 | 59.4 | 68 | 33 | 48.8 | 36 | 57 | 68 | 46 | 79 | 28.9 | 47.5 | 75 | ||
最大航速/(km/h) | 55 | 59 | 110 | 66 | 103 | 105.6 | 118 | 77 | 103 | 121 | 57 | 94 | 68 | 97 | 109 | 92 | 134 | 58.4 | 91 | 128 | ||
抗摧毁能力 | 26 | 27.2 | 44.6 | 28 | 42.1 | 41.3 | 55.3 | 33 | 42.9 | 54.2 | 28.3 | 37.9 | 29.8 | 41.3 | 55.1 | 36.3 | 60 | 25.5 | 37.1 | 58.7 | ||
发动机排气量/cc | 86 | 121 | 173 | 87.4 | 176 | 153 | 167 | 62 | 76 | 93 | 124 | 80 | 129 | 153 | 200 | 118 | 195 | 61 | 67 | 187 | ||
发动机功率/马力 | 7.3 | 12 | 15.3 | 8 | 16.5 | 12.3 | 13.6 | 5.4 | 7.8 | 8.4 | 12.3 | 6.7 | 11.2 | 15 | 18 | 10 | 14 | 5.2 | 6 | 19 | ||
驻空高度/m | 1 480.0 | 1 359.0 | 1 200.0 | 1 345.0 | 1 467.0 | 1 347.0 | 1 345.0 | 1 455.0 | 1 456.0 | 1 245.0 | 1 323.0 | 1 423.0 | 1 342.0 | 1 433.0 | 1 324.0 | 1 432.0 | 1 544.0 | 1 534.0 | 1 234.0 | 1 469.0 | ||
驻空时长/h | 180.0 | 220.0 | 367.0 | 165.0 | 330.0 | 278.0 | 365.0 | 238.0 | 278.0 | 347.0 | 220.0 | 275.0 | 277.0 | 318.0 | 418.0 | 270.0 | 440.0 | 216.0 | 312.0 | 345.0 | ||
飞艇可靠性 | 平均寿命/d | 1876 | 1765 | 3242 | 1865 | 3214 | 2907 | 3366 | 2197 | 2854 | 3254 | 1987 | 2546 | 1967 | 3214 | 3324 | 2657 | 3765 | 1879 | 2376 | 3486 | |
平均无故障时间/d | 176 | 167 | 330 | 183 | 301 | 321 | 356 | 187 | 314 | 368 | 165 | 219 | 187 | 319 | 371 | 222 | 401 | 181 | 231 | 389 | ||
控制系统可靠性 | 69.4 | 69.6 | 132 | 75.2 | 130 | 131 | 154.9 | 94.2 | 131 | 151 | 92.2 | 109.2 | 83.1 | 123.2 | 149.2 | 105.3 | 167.2 | 68.4 | 109.4 | 164.2 | ||
电系统环境适应性 | 70.2 | 69.4 | 56.2 | 68.1 | 57.4 | 57.1 | 49.2 | 64.5 | 56.4 | 52.9 | 67.2 | 63.9 | 67.5 | 53.5 | 51.6 | 67.6 | 46.5 | 73.4 | 62.5 | 47.2 | ||
检修时长/min | 97.0 | 142.0 | 146.0 | 67.0 | 231.0 | 123.0 | 186.0 | 137.0 | 138.0 | 148.0 | 143.0 | 145.0 | 175.0 | 185.0 | 232.0 | 131.0 | 245.0 | 121.0 | 128.0 | 156.0 | ||
最大抗风能力 | 3.8 | 4.4 | 5.7 | 3.6 | 5.7 | 5.5 | 5.9 | 5.1 | 5.5 | 5.5 | 4.0 | 5.9 | 5.3 | 5.7 | 5.9 | 5.2 | 5.9 | 4.1 | 5.8 | 6.3 | ||
被动防护响应效率 | 67.0 | 58.0 | 68.0 | 68.0 | 58.0 | 68.0 | 71.0 | 67.0 | 58.0 | 60.0 | 72.0 | 69.0 | 66.0 | 85.0 | 72.0 | 59.0 | 55.0 | 57.0 | 55.0 | 65.0 | ||
载荷稳定性 | 气体环境适应性 | 9.6 | 9.5 | 4.8 | 9.5 | 5.3 | 5.2 | 2.9 | 8.8 | 5.2 | 3.3 | 9.5 | 7.3 | 9.2 | 6.2 | 3.2 | 8.2 | 1.0 | 9.6 | 8.3 | 2.0 | |
抗干扰能力 | 18 | 18.2 | 24.3 | 18.5 | 23.4 | 23.8 | 26.8 | 21 | 23.7 | 25.7 | 19.2 | 21.7 | 19.1 | 23.7 | 25.8 | 22 | 28 | 17.8 | 21.5 | 27 | ||
机载设备可靠性 | 88.2 | 88.4 | 94.3 | 88.8 | 93.4 | 93.6 | 96.3 | 90.3 | 93.5 | 95.3 | 89 | 91.7 | 89.5 | 93.6 | 95.6 | 91.5 | 97.8 | 87.8 | 91.7 | 97 | ||
温度适应性 | 76.0 | 45.0 | 57.0 | 75.0 | 43.0 | 66.0 | 65.0 | 78.0 | 65.0 | 67.0 | 54.0 | 47.0 | 56.0 | 76.0 | 67.0 | 74.0 | 65.0 | 66.0 | 69.0 | 71.0 | ||
抗辐射能力 | 95.0 | 89.0 | 77.0 | 80.0 | 94.0 | 92.0 | 85.0 | 94.0 | 84.0 | 89.0 | 93.0 | 92.0 | 92.0 | 81.0 | 92.0 | 91.0 | 85.0 | 83.0 | 92.0 | 83.0 | ||
载荷侦察能力 | 处理信息能力 | 7.0 | 6.9 | 5.6 | 6.9 | 5.7 | 5.8 | 4.8 | 6.5 | 5.4 | 5.3 | 7.0 | 6.4 | 6.8 | 5.6 | 5.2 | 6.8 | 4.7 | 7.3 | 6.3 | 4.8 | |
视野范围 | 190 | 192 | 221 | 196 | 224 | 230 | 253 | 201 | 227 | 260 | 198 | 212 | 199 | 221 | 265 | 210 | 280 | 197 | 216 | 276 | ||
识别准确率/% | 50.0 | 51.0 | 92.0 | 56.0 | 88.0 | 87.0 | 94.0 | 60.0 | 85.0 | 92.9 | 57.0 | 79.0 | 61.0 | 91.0 | 95.0 | 77.0 | 98.0 | 55.0 | 78.9 | 93.0 | ||
信息融合能力 | 78.0 | 87.0 | 88.0 | 78.0 | 89.0 | 76.0 | 78.0 | 87.0 | 86.0 | 87.0 | 79.0 | 87.0 | 89.0 | 77.0 | 78.0 | 65.0 | 86.0 | 86.0 | 89.0 | 76.0 | ||
飞艇载荷能力 | 艇囊容积/m3 | 27 | 46.7 | 88.6 | 25.7 | 87.9 | 68 | 108 | 48 | 68 | 90 | 33 | 55 | 45 | 66 | 110 | 52 | 94 | 34 | 53 | 103 | |
最大载重量/kg | 3 | 10 | 25 | 3.6 | 22.4 | 20 | 30 | 11 | 20 | 26.4 | 5 | 9.8 | 12 | 21 | 33 | 12 | 24 | 7 | 15.8 | 31 |
Table 4
Effectiveness evaluation values of various models of high altitude airships"
型号 | 本文方法效能评估值 | 文献[ | 文献[ |
1 | 0.143 2 | 0.258 6 | 0.274 8 |
2 | 0.170 4 | 0.366 8 | 0.282 5 |
3 | 0.613 4 | 0.472 2 | 0.501 8 |
4 | 0.181 9 | 0.251 6 | 0.241 5 |
5 | 0.572 1 | 0.427 6 | 0.510 2 |
6 | 0.562 0 | 0.465 2 | 0.452 6 |
7 | 0.745 6 | 0.503 2 | 0.551 9 |
8 | 0.296 5 | 0.413 4 | 0.394 0 |
9 | 0.545 5 | 0.480 6 | 0.503 1 |
10 | 0.724 5 | 0.597 4 | 0.525 8 |
11 | 0.213 7 | 0.366 8 | 0.321 1 |
12 | 0.410 9 | 0.458 6 | 0.446 2 |
13 | 0.247 1 | 0.372 2 | 0.382 1 |
14 | 0.544 6 | 0.451 6 | 0.491 1 |
15 | 0.748 5 | 0.509 6 | 0.574 8 |
16 | 0.419 0 | 0.490 3 | 0.453 2 |
17 | 0.835 6 | 0.568 3 | 0.673 8 |
18 | 0.174 3 | 0.313 4 | 0.266 8 |
19 | 0.414 3 | 0.480 6 | 0.434 0 |
20 | 0.809 0 | 0.597 4 | 0.636 9 |
1 |
HU S X , ZHANG A W , CHAI S T . ASQ-MPHAAS: multi-payload observation system from high altitude airship[J]. IEEE Sensors Journal, 2019, 19 (24): 12353- 12362.
doi: 10.1109/JSEN.2019.2937804 |
2 |
YAN K , JIANG J , SUN M W , et al. Coordinated symmetrical altitude position and attitude control for stratospheric airship subject to strong aerodynamic uncertainties[J]. Symmetry, 2023, 15 (6): 1260.
doi: 10.3390/sym15061260 |
3 | JING Y H , YANG Z H , ZHOU P F , et al. Cooperative deployment multi-objective optimization approach for high-resolution multi-airship earth-observation coverage network[J]. IEEE Trans. on Network Science and Engineering, 2023, 10 (6): 3435- 3449. |
4 |
CHEN Y L , SHEN S P , HU Z K , et al. Fixed-point control of airships based on a characteristic model: a data-driven approach[J]. Mathematics, 2023, 11 (2): 310.
doi: 10.3390/math11020310 |
5 |
HU S X , WANG B K , ZHANG A W , et al. Genetic algorithm and greedy strategy-based multi-mission-point route planning for heavy-duty semi-rigid airship[J]. Sensors, 2022, 22 (13): 4954.
doi: 10.3390/s22134954 |
6 | XU J P , MENG Z Y , XU L . ISHM-oriented hierarchical effectiveness evaluation approach for spacecraft avionics[J]. IEEE Systems Journal, 2014, 9 (2): 461- 473. |
7 | BOUZIAT T, CAMPS V, COMBETTES S. A cooperative SoS architecting approach based on adaptive multi-agent systems[C]// Proc. of the 6th International Workshop on Software Engineering for Systems-of-Systems, 2018: 8-16. |
8 |
马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44 (6): 1889- 1896.
doi: 10.12305/j.issn.1001-506X.2022.06.15 |
MA J , YANG J Y , WU X . Evaluation of operational system of systems effectiveness based on pre-clustering active semi-supervised learning[J]. Systems Engineering and Electronics, 2022, 44 (6): 1889- 1896.
doi: 10.12305/j.issn.1001-506X.2022.06.15 |
|
9 | SUN Y K , FANG Z G . Research on projection gray target model based on FANP-QFD for weapon system of systems capability evaluation[J]. IEEE Systems Journal, 2020, 15 (3): 4126- 4136. |
10 |
邱禄芸, 方志耕, 陶良彦, 等. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44 (12): 3728- 3737.
doi: 10.12305/j.issn.1001-506X.2022.12.17 |
QIU L Y , FANG Z G , TAO L Y , et al. Effectiveness evaluation of network SoS based on improved FDNA model[J]. Systems Engineering and Electronics, 2022, 44 (12): 3728- 3737.
doi: 10.12305/j.issn.1001-506X.2022.12.17 |
|
11 | SONG L N , SHI D X , XIA J Q , et al. Spatial-aware dynamic lightweight self-supervised monocular depth estimation[J]. IEEE Robotics and Automation Letters, 2023, 9 (1): 883- 890. |
12 | LI G Z , ZHANG A N , ZHANG Q Z , et al. Pearson correlation coefficient-based performance enhancement of broad learning system for stock price prediction[J]. IEEE Trans. on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (5): 2413- 2417. |
13 | ZHANG D H , YANG Y C , LIU Y M , et al. Hybrid HVDC line pilot protection method based on EMD and Spearman correlation coefficient[J]. Power System Protection and Control, 2021, 49 (9): 1- 11. |
14 | SZEKELY G J , RIZZO M L , BAKIROV N K . Measuring and testing dependence by correlation of distances[J]. The Annals of Statistics, 2007, 35 (6): 2769- 2794. |
15 | RUAN S F , CHEN B Z , SONG K F , et al. Weighted naive Bayes text classification algorithm based on improved distance correlation coefficient[J]. Neural Computing and Applications, 2022, 34 (4): 2729- 2738. |
16 | ASGHARIVASKASI A , ATANASOV N . Semantic OcTree map and Shannon mutual information computation for robot exploration[J]. IEEE Trans. on Robotics, 2023, 39 (3): 1910- 1928. |
17 | CHEN B , WANG J , LV Y Y , et al. Device-free wireless sensing with few labels through mutual information maximization[J]. IEEE Internet of Things Journal, 2024, 11 (6): 10513- 10524. |
18 | RESHEF D , RESHEF Y , FINUCANE H K , et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524. |
19 | ZHANG Q Y, ZHANG W, LI Q Q, et al. Research on the flexibility of carrier-based aircraft equipment system based on complex network theory[C]//Proc. of the International Conference on Intelligent Computing, Automation and Systems, 2019: 253-257. |
20 | ZHANG D , JIA L M , NING J , et al. Power grid structure performance evaluation based on complex network cascade failure analysis[J]. Energies, 2023, 16 (2): 990. |
21 | LEI M , DONG Y F , LI Z , et al. Application of a modified BPS neural network based on three-way decision theory in an effectiveness evaluation for a remote sensing satellite cluster[J]. Remote Sensing, 2023, 15 (13): 3305. |
22 | JIAO W H . Performance evaluation of state-owned enterprises based on fuzzy neural network combination model[J]. Soft Computing, 2022, 26 (20): 11105- 11113. |
23 | 季玉琦, 谢欢, 史少彧, 等. 基于EWM-AHP-BP神经网络的地区电网电压无功组合评价[J]. 系统仿真学报, 2023, 35 (4): 843- 852. |
JI Y Q , XIE H , SHI S Y , et al. Voltage and reactive power combinational evaluation of regional power grid based on EWM-AHP-BP neural network[J]. Journal of System Simulation, 2023, 35 (4): 843- 852. | |
24 | HAN F , LIU Z L , WANG C X , et al. Research on optimization method of railway construction scheme based on multidimensional combination weighting and improved grey theory[J]. Scientific Reports, 2024, 14 (1): 3023. |
25 | WANG J , HAO Y L , YANG C . A comprehensive prediction model for VHF radio wave propagation by integrating entropy weight theory and machine learning methods[J]. IEEE Trans. on Antennas and Propagation, 2023, 97 (7): 6249- 6254. |
26 | 周依希, 李晓明, 瞿合祚. 基于反熵-AHP二次规划组合赋权法的电网节点综合脆弱性评估[J]. 电力自动化设备, 2019, 39 (7): 133- 140. |
ZHOU Y X , LI X M , QU H Z . Comprehensive vulnerability assessment of power grid nodes based on the combination weighting method of anti entropy AHP quadratic programming[J]. Power Automation Equipment, 2019, 39 (7): 133- 140. | |
27 | FAN L , SPIRKOVA J , MESIAR R , et al. Multi-criteria fuzzy comprehensive evaluation in interval environment with dual preferences[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39 (1): 1361- 1369. |
28 | SHI Z G , ZUO Z Y , DONG R N . Low-altitude scaled similarity analysis and flight tests of near space airships with pressure resistance mechanism[J]. Advances in Space Research, 2023, 72 (6): 2324- 2335. |
29 | DU H F , LI J , ZHU W Y , et al. Thermal performance analysis and comparison of stratospheric airships with rotatable and fixed photovoltaic array[J]. Energy Conversion and Management, 2018, 158, 373- 386. |
30 | JIAO J J , WANG X P , WEI T Y , et al. An adaptive fuzzy C-means noise image segmentation algorithm combining local and regional information[J]. IEEE Trans. on Fuzzy Systems, 2023, 31 (8): 2645- 2657. |
31 | Feiyu Aviation Science and Technology Ltd. Company product[EB/OL]. [2024-02-20]. http://fyft.com/products.shtml. |
[1] | Lisha ZHENG, Dongliang YIN, Xuan WANG. Operational effectiveness evaluation of phased array radar based on improved D-S evidence theory [J]. Systems Engineering and Electronics, 2024, 46(4): 1330-1336. |
[2] | Li MA, Peng SHI, Yu CHEN, Wenlong LI. Discrete event simulation and effectiveness evaluation of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(3): 906-913. |
[3] | Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG. Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method [J]. Systems Engineering and Electronics, 2024, 46(2): 561-569. |
[4] | Yu CHEN, Peng SHI, Li MA, Wenlong LI. Modeling and effectiveness evaluation method of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(10): 3407-3415. |
[5] | Rui LI, Mengtao ZHU, Yunjie LI. Online evaluation method of radar jamming effect based on inverse filtering processing [J]. Systems Engineering and Electronics, 2023, 45(9): 2706-2717. |
[6] | Jiaping CAO, Mengxin OU, Yishan LI, Jiang JIANG, Jichao LI. Island air defense electronic countermeasure equipment system construction and effectiveness evaluation [J]. Systems Engineering and Electronics, 2023, 45(9): 2784-2792. |
[7] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[8] | Xiangyang LIN, Qinghua XING, Fuxian LIU. Research on optimization of combat force for key air defense model [J]. Systems Engineering and Electronics, 2022, 44(3): 921-928. |
[9] | Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model [J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. |
[10] | Chenrui SHI, Lu TIAN, Zhan XU, Ruxin ZHI, Jinhui CHEN. Effectiveness evaluation method of emergency communication and sensing equipment based on PSO-BP [J]. Systems Engineering and Electronics, 2022, 44(11): 3455-3462. |
[11] | Xing PAN, Zhenyu ZHANG, Yanmei ZHANG, Ranran WANG. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analysis [J]. Systems Engineering and Electronics, 2021, 43(2): 390-398. |
[12] | Ang GAO, Qisheng GUO, Zhiming DONG, Shaoqing YANG. Research on efficiency evaluation method of multi unmanned ground vehicle system based on EAS+MADRL [J]. Systems Engineering and Electronics, 2021, 43(12): 3643-3651. |
[13] | Weisheng YANG, Yu WANG, Yang YANG, Liang TANG. Combat network effectiveness evaluation under different node attack strategies based on operation loop [J]. Systems Engineering and Electronics, 2021, 43(11): 3220-3228. |
[14] | Chi HAN, Wei XIONG. Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer [J]. Systems Engineering and Electronics, 2021, 43(10): 2902-2910. |
[15] | Biao LI, Liwen WANG, Zhiwei XING, Qian LUO. Effectiveness evaluation of ground support process for transit flight [J]. Systems Engineering and Electronics, 2020, 42(7): 1543-1549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||