Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (5): 1432-1442.doi: 10.12305/j.issn.1001-506X.2025.05.06
• Electronic Technology • Previous Articles
Wen SUN1, Juan CHENG2, Yihao WANG2,*, Kaichen CAO1, Mengmeng GE1, Liu HUANG1, Geng ZHANG2
Received:
2024-09-23
Online:
2025-06-11
Published:
2025-06-18
Contact:
Yihao WANG
CLC Number:
Wen SUN, Juan CHENG, Yihao WANG, Kaichen CAO, Mengmeng GE, Liu HUANG, Geng ZHANG. Effectiveness analysis and modeling of ship target detection utilizing hyperspectral remote sensing satellites[J]. Systems Engineering and Electronics, 2025, 47(5): 1432-1442.
Table 1
Typical spacebore hyperspectral remote sensing imaging and main indicators"
指标 | 高光谱载荷 | ||||||||
Hyperion | CHRIS | FTHSI | AHSI | HysIS | PRISMA | EnMAP | HyspIRI | CHIME | |
卫星平台 | EO-1 | PROBA | HJ-1-A | GF-5 | IMS-2 | PRISMA | German HS | HyspIRI | CHIME |
轨道类型 | LEO | LEO | LEO | LEO | LEO | LEO | LEO | LEO | LEO |
轨道高度/km | 705 | 550~670 | 540 | 705 | 630 | 615 | 652 | N/A | N/A |
分光方式 | 光栅 | 棱镜 | 傅里叶干涉 | 光栅 | N/A | 棱镜 | 棱镜 | N/A | N/A |
发射年份 | 2000 | 2001 | 2008 | 2018 | 2018 | 2019 | 2022 | 预计2024(未发射) | 预计2029 |
光谱范围/μm | 0.4~2.5 | 0.4~1.0 | 0.45~1.05 | 0.45~2.5 | 0.4~2.4 | 0.4~2.51 | 0.42~2.5 | 0.38~2.51 | 0.4~2.5 |
光谱通道数 | 220 | 62 | 105 | 330 | 256 | 237 | 244 | 212/8 | 210 |
光谱分辨率/nm | 10 | 1.25~11 | 2~9 | 5/10 | 10 | 12 | 5/10 | 10/80~540 | 10 |
空间分辨率/m | 30 | 25~50 | 100 | 30 | 30 | 30 | 30 | 60 | 20~30 |
幅宽/km | 7.7 | 13 | 50 | 60 | 30 | 30 | 30 | 150 | 120 |
Table 2
Summary of factors influencing imaging capability of hyperspectral imaging systems"
参数类型 | 参数名称 | 参数说明 |
载荷固有参数 | 焦距 | 从透镜中心到光聚集之焦点的距离 |
光谱定标精度 | 成像结果的光谱位置精度 | |
辐射定标精度 | 成像结果的辐射能量值精度 | |
探测器尺寸 | 探测器长度和宽度方向的像元数 | |
像元大小 | 单个像元的物理尺寸, 通常以微米为单位 | |
量化位数 | 存储数字图像单像素二进制位数, 通常为10 bit或12 bit | |
动态范围 | 通常指高光谱成像系统能记录地物目标有效信息的最亮和最暗值的比率 | |
帧频 | 成像系统每秒成像次数 | |
积分时间 | 成像系统单次成像曝光时间 | |
载荷性能参数 | 成像幅宽 | 给定成像距离下, 一次成像所覆盖地物宽度 |
谱段范围 | 成像系统所有谱段覆盖的范围, 通常为可见光到短波红外 | |
光谱分辨率 | 各个谱段的光谱响应带宽 | |
谱段数 | 装备成像的通道数量 | |
各谱段信噪比 | 图像各谱段的信号数值比噪声数值 | |
各谱段MTF | 各谱段的光学系统调制传递函数, 表征成像系统空间分辨能力 | |
平台参数 | 成像距离 | 高光谱成像系统平台距离观测目标的距离 |
观测姿态角 | 平台的俯仰、侧摆及偏流角 | |
平台速度 | 高光谱成像系统搭载平台相对于观测目标的移动速度 | |
平台稳定度 | 高光谱成像系统搭载平台移动、转动过程的稳定度(通过像移误差衡量) |
1 | TOTH C , JÓŹKÓW G . Remote sensing platforms and sensors: a survey[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115 (5): 22- 36. |
2 | ESMAEILI M , ABBASI-MOGHADAM D , SHARIFI A , et al. Hyperspectral image band selection based on CNN embedded GA (CNNeGA)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16 (3): 1927- 1950. |
3 |
OMIA E , BAE H , PARK E , et al. Remote sensing in field crop monitoring: a comprehensive review of sensor systems, data analyses and recent advances[J]. Remote Sensing, 2023, 15 (2): 354.
doi: 10.3390/rs15020354 |
4 | 张良培. 高光谱目标探测的进展与前沿问题[J]. 武汉大学学报(信息科学版), 2014, 39 (12): 1377- 1394. |
ZHANG L P . Advance and future challenges in hyperspectral target detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39 (12): 1377- 1394. | |
5 | XU F L , ZHANG G , SONG C , et al. Multiscale and cross-level attention learning for hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5501615. |
6 | ZHANG H T , YAO J , NI L , et al. Multimodal attention-aware convolutional neural networks for classification of hyperspectral and LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16, 3635- 3644. |
7 |
PARK J J , PARK K A , KIM T S , et al. Spectrum analysis and detection of ships based on aerial hyperspectral remote sensing experiments[J]. Journal of the Korean earth science society, 2024, 45 (3): 214- 223.
doi: 10.5467/JKESS.2024.45.3.214 |
8 | 屈博, 郑向涛, 钱学明, 等. 高光谱遥感影像异常目标检测研究进展[J]. 遥感学报, 2024, 28 (1): 42- 54. |
QU B , ZHENG X T , QIAN X M , et al. Research progress on hyperspectral anomaly detection[J]. National Remote Sensing Bulletin, 2024, 28 (1): 42- 54. | |
9 |
KANJIR U , GREIDANUS H , OSTIR K . Vessel detection and classification from spaceborne optical images: a literature survey[J]. Remote Sensing of Environment, 2018, 207, 1- 26.
doi: 10.1016/j.rse.2017.12.033 |
10 |
ZHAO T Q , WANG Y C , LI Z , et al. Ship detection with deep learning in optical remote-sensing images: a survey of challenges and advances[J]. Remote Sensing, 2024, 16 (7): 1145.
doi: 10.3390/rs16071145 |
11 | CHEN H F , XUE J X , WEN H Y , et al. EfficientShip: a hybrid deep learning framework for ship detection in the river[J]. CMES-Computer Modeling in Engineering & Sciences, 2024, 138 (1): 310- 320. |
12 |
ZHU C R , ZHOU H , WANG R S , et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (9): 3446- 3456.
doi: 10.1109/TGRS.2010.2046330 |
13 |
SONG W S , YAN D M , YAN J , et al. Ship detection and identification in SDGSAT-1 glimmer images based on the glimmer YOLO model[J]. International Journal of Digital Earth, 2023, 16 (2): 4687- 4706.
doi: 10.1080/17538947.2023.2277796 |
14 | PARK J J , PARK K A , KIM T S , et al. Aerial hyperspectral remote sensing detection for maritime search and surveillance of floating small objects[J]. Advances in space research, 2023, 72 (6): 2118- 2136. |
15 | 周鹏. 高分辨率光学遥感卫星效能评估与参数敏感性分析研究[D]. 武汉: 武汉大学, 2020. |
ZHOU P. Research on effectiveness evaluation and parameter sensitivity analysis for the high resolution optical remote sensing satellite[D]. Wuhan: Wuhan University, 2020. | |
16 | 孙文. 不确定信息下的评估指标权重配置方法[J]. 电讯技术, 2023, 63 (6): 882- 888. |
SUN W . A method of weight allocation for evaluation indicators under uncertain information[J]. Telecommunication Engineering, 2023, 63 (6): 882- 888. | |
17 | 孙文. 情报保障体系能力需求满足度评估方法[J]. 火力与指挥控制, 2024, 49 (4): 60- 70. |
SUN W . The evaluation method of capability requirement satisfactory degree for intelligence support system-of-systems[J]. Fire Control & Command Control, 2024, 49 (4): 60- 70. | |
18 | FU Z, ZHANG T, TAN C, et al. Weapon equipment operational index evaluation method based on cloud model[C]//Proc. of the Journal of Physics: Conference Series, 2023. |
19 | 王玉菊, 岳丽军. 基于模糊层次分析法的卫星探测效能评估算法[J]. 系统仿真学报, 2012, 24 (8): 1665-1668, 1673. |
WANG Y J , YUE L J . Algorithm for satellite detection capability based on fuzzy AHP assessment[J]. Journal of System Simulation, 2012, 24 (8): 1665-1668, 1673. | |
20 | 刘锋, 李琳. 光学遥感卫星信息获取能力指数的评估[J]. 光学精密工程, 2017, 25 (9): 2454- 2460. |
LIU F , LI L . Evaluation of information acquisition capability of optical remote sensing satellites[J]. Optics and Precision Engineering, 2017, 25 (9): 2454- 2460. | |
21 | 刘银年. 高光谱成像遥感载荷技术的现状与发展[J]. 遥感学报, 2021, 25 (1): 439- 459. |
LIU Y N . Development of hyperspectral imaging remote sensing technology[J]. National Remote Sensing Bulletin, 2021, 25 (1): 439- 459. | |
22 | QIAN S E . Hyperspectral satellites, evolution, and development history[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7032- 7056. |
23 | 高海亮, 顾行发, 余涛, 等. 环境卫星HJ1A超光谱成像仪在轨辐射定标及光谱响应函数敏感性分析[J]. 光谱学与光谱分析, 2010, 30 (11): 3149- 3155. |
GAO H L , GU X F , YU T , et al. HJ1A/HSI radiometric calibration and spectrum response function sensitivity analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30 (11): 3149- 3155. | |
24 | ZUCCO M, PISANI M, MARI D. A novel hyperspectral camera concept for SWIR-MWIR applications[C]//Proc. of the IEEE International Workshop on Metrology for AeroSpace, 2017: 386-390. |
25 | VANHELLEMONT Q , RUDDICK K . Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters[J]. Remote Sensing of Environment, 2021, 256, 112284. |
26 | WARREN M A , SIMIS S G H , MARTINEZ-VICENTE V , et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters[J]. Remote Sensing of Environment, 2019, 225, 267- 289. |
27 | WERDELL P J , MCKINNA L I W , BOSS E , et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing[J]. Progress in Oceanography, 2018, 160, 186- 212. |
28 | CHEN M R , CHI W , JIN L G . Extraction method of the contrast feature of ship wake images[J]. Advanced Materials Research, 2013, 712, 2403- 2406. |
29 | 陈丽, 李临寒, 王世勇, 等. MMShip: 中分辨率多光谱卫星图像船舶数据集[J]. 光学精密工程, 2023, 31 (13): 1962- 1972. |
CHEN L , LI L H , WANG S Y , et al. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 2023, 31 (13): 1962- 1972. | |
30 | STOIAN A . Ship detection in Sentinel 2 multi-spectral images with self-supervised learning[J]. Remote Sensing, 2021, 13 (21): 4255. |
31 | CHEN Y W, et al. Ship detection in optical sensing images based on yolov5[C]//Proc. of the 12th International Conference on Graphics and Image Processing, 2021. |
32 | LIU Z H , ZHANG W J , YU H , et al. Improved yolov5s for small ship detection with optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 8002205. |
[1] | Kai SHAO, Haogang LI, Yan LIANG, Jing NING, Wu CHEN. Remote sensing small target detection algorithm based on cross-scale feature fusion [J]. Systems Engineering and Electronics, 2025, 47(5): 1421-1431. |
[2] | Zhangqiu YUAN, Zhaoxu YANG, Haijun RONG. Lightweight effectiveness evaluation method for high altitude airships for both qualitative and quantitative indicators [J]. Systems Engineering and Electronics, 2025, 47(3): 817-826. |
[3] | Wei HAN, Fang GUO, Yujie LIU, Xichao SU, Jie LIU. Evaluation method of operational effectiveness for aircraft carrier formation based on triangular fuzzy number and operation loop [J]. Systems Engineering and Electronics, 2025, 47(3): 893-903. |
[4] | Chaofan PAN, Runsheng LI, Qing HU, Quanfu BAO, Yongqiang BAO. Ship multiple-object tracking model in remote sensing scene based on inertial prediction [J]. Systems Engineering and Electronics, 2025, 47(1): 41-51. |
[5] | Hailiang LU, Qingbiao FAN, Pengfei LI, Yinan LI, Songhua YAN, Liang LANG, Rong JIN, Qingxia LI. Development status and trend of synthetic aperture microwave radiation imaging technology [J]. Systems Engineering and Electronics, 2024, 46(4): 1143-1156. |
[6] | Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet [J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173. |
[7] | Zikang SHAO, Xiaoling ZHANG, Tianwen ZHANG, Tianjiao ZENG. SAR ship detection based on adaptive anchor and multi-scale enhancement [J]. Systems Engineering and Electronics, 2024, 46(4): 1204-1211. |
[8] | Lisha ZHENG, Dongliang YIN, Xuan WANG. Operational effectiveness evaluation of phased array radar based on improved D-S evidence theory [J]. Systems Engineering and Electronics, 2024, 46(4): 1330-1336. |
[9] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
[10] | Li MA, Peng SHI, Yu CHEN, Wenlong LI. Discrete event simulation and effectiveness evaluation of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(3): 906-913. |
[11] | Yali ZHANG, Wei FENG, Yinghui QUAN, Mengdao XING. Ship recognition algorithm based on multi-level collaborative fusion of multi-source remote sensing images [J]. Systems Engineering and Electronics, 2024, 46(2): 407-418. |
[12] | Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG. Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method [J]. Systems Engineering and Electronics, 2024, 46(2): 561-569. |
[13] | Fengtao XUE, Tianyu SUN, Yimin YANG, Jian YANG. Rotated ship target detection algorithm in SAR images based on global feature fusion [J]. Systems Engineering and Electronics, 2024, 46(12): 4044-4053. |
[14] | Yu CHEN, Peng SHI, Li MA, Wenlong LI. Modeling and effectiveness evaluation method of space-based information support system [J]. Systems Engineering and Electronics, 2024, 46(10): 3407-3415. |
[15] | Rui LI, Mengtao ZHU, Yunjie LI. Online evaluation method of radar jamming effect based on inverse filtering processing [J]. Systems Engineering and Electronics, 2023, 45(9): 2706-2717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||