Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (5): 1663-1670.doi: 10.12305/j.issn.1001-506X.2025.05.28
• Guidance, Navigation and Control • Previous Articles
Hongde DAI1,*, Jiawei YU2, Baidong ZHENG1, Xiaoyu ZHANG2, Mi TIAN1
Received:
2024-04-02
Online:
2025-06-11
Published:
2025-06-18
Contact:
Hongde DAI
CLC Number:
Hongde DAI, Jiawei YU, Baidong ZHENG, Xiaoyu ZHANG, Mi TIAN. Research on inertial pedestrian navigation algorithm based on prediction and correction of heading error through full-interval[J]. Systems Engineering and Electronics, 2025, 47(5): 1663-1670.
Table 1
Comparison of position and trajectory errors"
算法 | 参考点坐标/m | 对应点坐标/m | Δr/m | ΔR/m | ΔS/m |
算法1 | (0, 5.5) | (-0.48, 4.86) | 0.80 | 3.81 | 2.77 |
(11, 5.5) | (10.22, 5.34) | 0.80 | 3.81 | 2.77 | |
(11, -11) | (10.33, -10.79) | 0.70 | 3.81 | 2.77 | |
(-29.32, -11) | (-28.47, -16.47) | 5.54 | 3.81 | 2.77 | |
(-29.32, 5.5) | (-33.31, -1.36) | 7.94 | 3.81 | 2.77 | |
(-18.32, 5.5) | (-22.9, 1.58) | 6.03 | 3.81 | 2.77 | |
(-18.32, 0) | (-21.73, -3.46) | 4.86 | 3.81 | 2.77 | |
算法2 | (0, 5.5) | (-0.48, 4.86) | 0.80 | 1.84 | 1.05 |
(11, 5.5) | (10.28, 5.58) | 0.72 | 1.84 | 1.05 | |
(11, -11) | (10.87, -10.42) | 0.59 | 1.84 | 1.05 | |
(-29.32, -11) | (-28.41, -13.63) | 2.78 | 1.84 | 1.05 | |
(-29.32, 5.5) | (-30.42, 2.28) | 3.40 | 1.84 | 1.05 | |
(-18.32, 5.5) | (-19.95, 3.52) | 2.56 | 1.84 | 1.05 | |
(-18.32, 0) | (-19.45, -1.65) | 2.00 | 1.84 | 1.05 | |
算法3 | (0, 5.5) | (-0.48, 4.86) | 0.80 | 1.30 | 0.56 |
(11, 5.5) | (10.27, 5.77) | 0.78 | 1.30 | 0.56 | |
(11, -11) | (11.18, -10.34) | 0.68 | 1.30 | 0.56 | |
(-29.32, -11) | (-28.12, -12.6) | 2.00 | 1.30 | 0.56 | |
(-29.32, 5.5) | (-29.2, 3.33) | 2.17 | 1.30 | 0.56 | |
(-18.32, 5.5) | (-18.45, 4.02) | 1.49 | 1.30 | 0.56 | |
(-18.32, 0) | (-18.23, -1.16) | 1.16 | 1.30 | 0.56 | |
算法4 | (0, 5.5) | (-0.48, 4.86) | 0.80 | 0.94 | 0.17 |
(11, 5.5) | (10.29, 5.85) | 0.79 | 0.94 | 0.17 | |
(11, -11) | (11.22, -10.24) | 0.79 | 0.94 | 0.17 | |
(-29.32, -11) | (-28.25, -10.87) | 1.08 | 0.94 | 0.17 | |
(-29.32, 5.5) | (-28.22, 4.89) | 1.26 | 0.94 | 0.17 | |
(-18.32, 5.5) | (-17.4 6, 4.92) | 1.04 | 0.94 | 0.17 | |
(-18.32, 0) | (-17.55, -0.25) | 0.81 | 0.94 | 0.17 |
1 | 宋丽君,路明慧,赵思晗,等.MEMS惯性鞋式行人导航系统[J].飞控与探测,2023,6(5):61-68. |
SONGL J,LUM H,ZHAOS H,et al.MEMS inertial shoe-mounted pedestrian navigation system[J].Flight Control & Detection,2023,6(5):61-68. | |
2 |
SUIJ D,CHANGT S.IMU-based deep stride length estimation with self-supervised learning[J].IEEE Sensors Journal,2021,21(6):7380-7387.
doi: 10.1109/JSEN.2021.3049523 |
3 |
VANDERMEERENS,STEENDAMH.Deep-learning-based step detection and step length estimation with a handheld IMU[J].IEEE Sensors Journal,2022,22(24):24205-24221.
doi: 10.1109/JSEN.2022.3219412 |
4 |
BOF,LIJ,WANGW B.Mode-independent stride length estimation with IMUs in smartphones[J].IEEE Sensors Journal,2022,22(6):5824-5833.
doi: 10.1109/JSEN.2022.3148313 |
5 | 王伟,马晞茗,王敬民,等.基于自适应PDR补偿的UWB/MIMU组合行人定位算法[J].仪表技术与传感器,2023(6):100-108. |
WANGW,MAX M,WANGJ M,et al.UWB/MIMU combined pedestrian location algorithm based on adaptive PDR compensation[J].Instrument Technique and Sensor,2023(6):100-108. | |
6 |
WAGNERJ F,KOHLM,GIORGIB.Reevaluation of algorithmic basics for ZUPT based pedestrian navigation[J].IEEE Access,2022,10,118419-118437.
doi: 10.1109/ACCESS.2022.3220629 |
7 |
YANGM,ZHUR,XIAOZ L,et al.Symmetrical-net: adaptive zero velocity detection for ZUPT-aided pedestrian navigation system[J].IEEE Sensors Journal,2022,22(6):5075-5085.
doi: 10.1109/JSEN.2021.3094301 |
8 | WANGY,SHKELA M.Adaptive threshold for zero-velocity detector in ZUPT-aided pedestrian inertial navigation[J].IEEE Sensors Letters,2019,3(11):7002304. |
9 | SUNY J,XUX L,TIANX C,et al.An adaptive zero-velocity interval detector using instep-mounted inertial measurement unit[J].IEEE Trans.on Instrumentation and Measurement,2021,70,8502013. |
10 |
WAGSTAFFB,PERETROUKHINV,KELLYJ.Robust data-driven zero-velocity detection for foot-mounted inertial navigation[J].IEEE Sensors Journal,2020,20(2):957-967.
doi: 10.1109/JSEN.2019.2944412 |
11 | 黄凤荣,刘庆璘,高敏,等.基于PRCNN-Attention鲁棒零速检测的行人惯性导航方法[J].中国惯性技术学报,2023,31(6):547-554. |
HUANGF R,LIUQ L,GAOM,et al.Pedestrian inertial navigation method based on PRCNN-Attention robust zero-velocity detection[J].Journal of Chinese Inertial Technology,2023,31(6):547-554. | |
12 |
CHENC,ZHAOP,LUC X,et al.Deep-learning-based pedestrian inertial navigation: methods, data set, and on-device inference[J].IEEE Internet of Things Journal,2020,7(5):4431-4441.
doi: 10.1109/JIOT.2020.2966773 |
13 | LIZ,XUX B,JIM X,et al.Pedestrian positioning based on dual inertial sensors and foot geometric constraints[J].IEEE Trans.on Industrial Electronics,2022,2022(6):6401-6409. |
14 |
LIZ,XUX B,WANGJ S,et al.Prior kinematic information fusion for pedestrian localization with toe-heel shank MIMUs[J].IEEE Trans.on Industrial Electronics,2023,70(7):7498-7506.
doi: 10.1109/TIE.2022.3201278 |
15 | 王希彬,戴洪德,全闻捷,等.基于加速度补偿的惯性行人导航非零速区间姿态估计CKF算法[J].系统工程与电子技术,2023,45(9):2894-2901. |
WANGX B,DAIH D,QUANW J,et al.Nonzero-velocity interval attitude estimation CKF algorithm based on acceleration compensation for inertial pedestrian navigation[J].Systems Engineering and Electronics,2023,45(9):2894-2901. | |
16 | 戴洪德,李松林,周绍磊,等.基于伪标准差和N-P准则的行人导航零速检测[J].中国惯性技术学报,2018,26(6):701-707. |
DAIH D,LIS L,ZHOUS L,et al.Pedestrian navigation zero-velocity detection based on pseudo-standard deviation and N-P criterion[J].Journal of Chinese Inertial Technology,2018,26(6):701-707. | |
17 | WANGQ Y,YINJ,NOURELDINA,et al.Research on an improved method for foot-mounted inertial/magnetometer pedestrian-positioning based on the adaptive gradient descent algorithm[J].Sensors,2018,18(12):4105-4122. |
18 | QIUS,WANGZ L,ZHAOH Y,et al.Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion[J].Information Fusion,2018,39(C):108-119. |
19 | ABDULRAHIMK,HIDEC,MOORET,et al.Aiding low cost inertial navigation with building heading for pedestrian navigation[J].The Journal of Navigation,2011,64(2):219-233. |
20 | NILSSONJ O,ZACHARIAHD,SKOGI,et al.Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging[J].Eurasip Journal on Advances in Signal Processing,2013,2013,164. |
21 | 于文昭. 基于UWB/微惯性的协同行人导航技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
YU W Z. Research on cooperative pedestrian navigation based on UWB/MIMU[D]. Harbin: Harbin Institute of Technology, 2020. | |
22 | 周广涛,王晴晴,高远,等.基于ZIHR航向角修正方法的行人导航算法[J].系统工程与电子技术,2019,41(1):170-177. |
ZHOUG T,WANGQ Q,GAOY,et al.Pedestrian naviga tion algorithm based on ZIHR heading angle correction me-thod[J].Systems Engineering and Electronics,2019,41(1):170-177. | |
23 | 戴洪德,张笑宇,郑百东,等.基于零速修正与姿态自观测的惯性行人导航算法[J].北京航空航天大学学报,2022,48(7):1135-1144. |
DAIH D,ZHANGX Y,ZHENGB D,et al.Inertial pedestrian navigation algorithm based on zero velocity update and attitude self-observation[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1135-1144. | |
24 | WAHLSTRÖMJ,SKOGI.Fifteen years of progress at zero velocity: a review[J].IEEE Sensors Journal,2021,21(2):1139-1151. |
25 | SHIX,WANGZ L,ZHAOH Y,et al.Threshold-free phase segmentation and zero velocity detection for gait analysis using foot-mounted inertial sensors[J].IEEE Trans.on Human-Machine Systems,2022,53(1):176-186. |
26 | 李磊,苏中,吴学佳,等.粒子群优化噪声参数的行人导航零速修正算法[J].传感技术学报,2024,37(1):42-49. |
LIL,SUZ,WUX J,et al.Zero velocity update algorithm for pedestrian navigation based on particle swarm optimization[J].Chinese Journal of Sensors and Actuators,2024,37(1):42-49. | |
27 | GUIJ,ZHAOH M,XUX,et al.Heading constraint algorithm for foot-mounted PNS using low-cost IMU[J].Journal of Systems Engineering and Electronics,2022,33(3):727-736. |
28 |
戴洪德,马宇峰,戴邵武,等.航向误差非线性预测的惯性行人导航零速修正算法[J].系统工程与电子技术,2023,45(8):2555-2561.
doi: 10.12305/j.issn.1001-506X.2023.08.30 |
DAIH D,MAY F,DAIS W,et al.Zero velocity update algorithm for inertial pedestrian navigation based on nonlinear prediction of heading error[J].Systems Engineering and Electronics,2023,45(8):2555-2561.
doi: 10.12305/j.issn.1001-506X.2023.08.30 |
|
29 | 周绍磊,李松林,戴洪德,等.一种优化高度通道的行人导航算法[J].海军航空工程学院学报,2018,33(5):479-485. |
ZHOUS L,LIS L,DAIH D,et al.A pedestrian navigation algorithm with improved height channel[J].Journal of Naval Aeronautical and Astronautical University,2018,33(5):479-485. | |
30 | YANF,LIS,ZHANGE Z,et al.An intelligent adaptive Kalman filter for integrated navigation systems[J].IEEE Access,2020,8,213306-213317. |
[1] | Weihong FU, Yufei ZHOU, Xinyu ZHANG, Naian LIU. Single-channel blind source separation algorithm based on parameter estimation and Kalman filter [J]. Systems Engineering and Electronics, 2024, 46(8): 2850-2856. |
[2] | Shoujian ZHANG, Mingzhen GUI. Navigation method using angle/velocity measurement based on GPR-UKF [J]. Systems Engineering and Electronics, 2024, 46(12): 4183-4191. |
[3] | Yunlong ZHAO, Qian SUN, Xin JIAN, Yibing LI, Fe YU. INS/5G integrated navigation method based on improved EMD-CIIT denoising algorithm [J]. Systems Engineering and Electronics, 2024, 46(12): 4203-4212. |
[4] | Hongde DAI, Yufeng MA, Shaowu DAI, Baidong ZHENG, Xiaoyu ZHANG. Zero velocity update algorithm for inertial pedestrian navigation based on nonlinear prediction of heading error [J]. Systems Engineering and Electronics, 2023, 45(8): 2555-2561. |
[5] | Yikang HE, Wenhan ZHANG, Zhenhua WANG, Wen HE. Solar cell array rotation angle estimation method for satellite emergency recovery [J]. Systems Engineering and Electronics, 2023, 45(3): 797-805. |
[6] | Baojie CAI, Lei SHAO. Robust filtering algorithm based on three discriminant domain and least squares fitting [J]. Systems Engineering and Electronics, 2021, 43(5): 1346-1353. |
[7] | LIU Songtao, WANG Zhan, WEI Baoyan. Image tracking system for conventional moving target and abrupt maneuvering target [J]. Systems Engineering and Electronics, 2019, 41(8): 1692-1698. |
[8] | ZOU Zisheng, CONG Shuang, SHANG Weiwei, CHEN Ding. State filtering and controller design for fine tracking system in quantum positioning [J]. Systems Engineering and Electronics, 2019, 41(3): 601-610. |
[9] | GE Baoshuang, ZHANG Hai, JIN Yanqiong. Redundant measurement based method for online mitigation of GNSS multipath errors [J]. Systems Engineering and Electronics, 2019, 41(11): 2581-2587. |
[10] | HU Jie, ZHU Yixian, SHI Xiaozhu. Estimation of azimuth gyro drifts with single-axis rotational SINS [J]. Systems Engineering and Electronics, 2018, 40(10): 2334-2339. |
[11] | LI Ye1, GUO Jianguo1, ZHAO Bin1, YOU YuHua2, LU Xiaodong1, ZHOU Jun1. Aircraft dynamicsaided MEMS inertial navigation system [J]. Systems Engineering and Electronics, 2016, 38(8): 1880-1885. |
[12] | GAO Wei1, SHAN Wei1, XU Bo1, CHENG Zhengsheng2. Transfer alignment of platform inertial navigation#br# in the inertial coordinate [J]. Systems Engineering and Electronics, 2015, 37(5): 1151-1156. |
[13] | WANG Qiang, ZHANG An, ZHANG Yanxia. Realtime method of UAV path planning based onheuristic predictive window [J]. Systems Engineering and Electronics, 2015, 37(10): 2279-2285. |
[14] | WU Wei-hua,JIANG Jing,FAN Xiong-hua,YUAN Jun-quan. Filtering algorithms of passive location based on PDR/DFR by single airborne platform in WGS-84 [J]. Systems Engineering and Electronics, 2014, 36(1): 31-37. |
[15] | FENG Zhihua, GAO Shesheng, CHEN Lirong, JIAO Yalin. Random weighting fitting method of systemic errors and covariance matrices in dynamic model [J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 348-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||