Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (5): 1646-1654.doi: 10.12305/j.issn.1001-506X.2025.05.26
• Guidance, Navigation and Control • Previous Articles
Xun HUANG1, Boyi CHEN1,*, Shouyong PENG2, Yanbin LIU1, Ben YANG1, Haoran PANG1
Received:
2024-06-05
Online:
2025-06-11
Published:
2025-06-18
Contact:
Boyi CHEN
CLC Number:
Xun HUANG, Boyi CHEN, Shouyong PENG, Yanbin LIU, Ben YANG, Haoran PANG. Trajectory optimization strategy for hypersonic vehicle under control constraints[J]. Systems Engineering and Electronics, 2025, 47(5): 1646-1654.
1 |
DINGY B,YUEX K,CHENG S,et al.Review of control and guidance technology on hypersonic vehicle[J].Chinese Journal of Aeronautics,2022,35(7):1-18.
doi: 10.1016/j.cja.2021.10.037 |
2 |
ZHANGY L,WUH Y,ZHAOJ L,et al.Design and performance analysis of morphing nose cone driven by a novel bionic parallel mechanism for aerospace vehicle[J].Aerospace Science and Technology,2023,139,108365.
doi: 10.1016/j.ast.2023.108365 |
3 |
ANH,WUQ Q,WANGC H,et al.Scramjetoperation guar anteed longitudinal control of air-breathing hypersonic vehicles[J].IEEE/ASME Trans.on Mechatronics,2020,25(6):2587-2598.
doi: 10.1109/TMECH.2020.2983521 |
4 |
MAQ H,PANR,LIJ P,et al.Study on dynamic pressure control of air-breathing hypersonic vehicle[J].Journal of Physics: Conference Series,2023,2460(1):012040.
doi: 10.1088/1742-6596/2460/1/012040 |
5 | GAO B L, YAO Y D, CHENG H, et al. An online trajectory planning method for hypersonic aircraft considering maneuver-ability[C]//Proc. of the IEEE 4th International Conference on Computer, Control and Robotics, 2024: 323-327. |
6 |
SAHBONN,JACEWICZM,LICHOTAP,et al.Path-following control for thrust-vectored hypersonic aircraft[J].Energies,2023,16(5):2501.
doi: 10.3390/en16052501 |
7 |
赵昱宇,索超,王雨潇.基于微分平坦的高超声速飞行器跟踪控制方法[J].系统工程与电子技术,2024,46(3):1084-1092.
doi: 10.12305/j.issn.1001-506X.2024.03.35 |
ZHAOY Y,SUOC,WANGY X.Differential flatness-based tracking control method for hypersonic vehicle[J].Systems Engineering and Electronics,2024,46(3):1084-1092.
doi: 10.12305/j.issn.1001-506X.2024.03.35 |
|
8 | 闫循良,王舒眉,王培臣,等.RBCC高超声速飞行器上升段轨迹快速优化[J].西北工业大学学报,2023,41(6):1064-1072. |
YANX L,WANGS M,WANGP C,et al.Rapid ascent tra-jectory optimization of rocket-based combined cycle hypersonic vehicle[J].Journal of Northwestern Polytechnical University,2023,41(6):1064-1072. | |
9 |
WANGJ Y,WUY P,LIUM,et al.A real-time trajectory optimization method for hypersonic vehicles based on a deep neural network[J].Aerospace,2022,9(4):188.
doi: 10.3390/aerospace9040188 |
10 | 许泽宇,王洪波,康永来,等.基于轨迹优化的返回式滑翔飞行器最小航程影响因素分析[J].导弹航天运载技术,2019(5):7-11. |
XUZ Y,WANGH B,KANGY L,et al.Analysis of the impact factors for the minimum-range of the reentry glide vehicle based on trajectory optimization[J].Missiles and Space Vehicles,2019(5):7-11. | |
11 | 赵佳钏. 助推滑翔式导弹助推段轨迹优化及制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
ZHAO J C. Research on trajectory optimization and guidance method of boost-glide missile in boost phase[D]. Harbin: Harbin Institute of Technology, 2021. | |
12 | 许东欢,徐桂甲,叶赛仙,等.基于伪谱法的空天飞行器上升段非线性闭环最优制导算法[J].战术导弹技术,2017(4):57-65. |
XUD H,XUG J,YES X,et al.Nonlinear closed-loop optimal ascent guidance for aerospace vehicle based on pseudospectral method[J].Tactical Missile Technology,2017(4):57-65. | |
13 | 杨希祥,杨慧欣,王鹏.伪谱法及其在飞行器轨迹优化设计领域的应用综述[J].国防科技大学学报,2015,37(4):1-8. |
YANGX X,YANGH X,WANGP.Overview of pseudo-spectral method and its application in trajectory optimum design for flight vehicles[J].Journal of National University of Defense Rechnology,2015,37(4):1-8. | |
14 |
MBAGWUC C,DALLED J,DRISCOLLJ F.Maximizing lift-to-drag and thrust-to-drag ratios for trimmed hypersonic vehicles[J].Journal of Aircraft,2023,60(5):1564-1576.
doi: 10.2514/1.C037186 |
15 | 陈柏屹. 空天飞行器面向控制一体化的建模及多系统关联特性分析[D]. 南京: 南京航空航天大学, 2019. |
CHEN B Y. Control-oriented modeling andassociated characteristic analysis for integrated design of aerospace vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
16 |
PARKERJ T,SERRANIA,YURKOVICHS,et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics,2007,30(3):856-869.
doi: 10.2514/1.27830 |
17 | 杨犇. 考虑飞推耦合的高超声速飞行器智能火力控制方法研究[D]. 南京: 南京航空航天大学, 2023. |
YANG B. Research on intelligent fire control method for hypersonic vehicle with flight-propulsion interactions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023. | |
18 | LIH S,WANGY,XUS C,et al.Trajectory optimization of hypersonic periodic cruise using an improved PSO algorithm[J].International Journal of Aeros pace Engineering,2021,2021(4):2526916. |
19 | 赵鹏. 高超声速助推/吸气巡航飞行器动力学特性及轨迹优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
ZHAO P. Dynamic characteristics and trajectory optimization of hypersonic boost/in-hale cruise vehicle[D]. Harbin: Harbin Institute of Technology, 2022. | |
20 | 郭建国,苏亚鲁.高超飞行器自适应动态规划的控制系统设计[J].系统工程与电子技术,2021,43(6):1628-1635. |
GUOJ G,SUY L.Control system design of adaptive dynamic programming for hypersonic vehicle[J].Systems Engineering and Electronics,2021,43(6):1628-1635. | |
21 | FIORENTINI L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus: the Ohio State University, 2010. |
22 |
BOLENDERM A,DOMAND B.Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J].Journal of Spacecraft and Rockets,2007,44(2):374-387.
doi: 10.2514/1.23370 |
23 | MALYUTAD,YUY,ELANGOP,et al.Advances in trajectory optimization for space vehicle control[J].Annual Reviews in Control,2021,52,282-315. |
24 | DONG C L, LI Z T, ZHANG H B, et al. Trajectory optimization of hypersonic glider based on attack angle-velocity profile using Gauss pseudo-spectral method[C]//Proc. of the IEEE 41st Chinese Control Conference, 2022: 3287-3292. |
25 |
岳彩红,唐胜景,郭杰,等.高超声速伸缩式变形飞行器再入轨迹快速优化[J].系统工程与电子技术,2021,43(8):2232-2243.
doi: 10.12305/j.issn.1001-506X.2021.08.25 |
YUEC H,TANGS J,GUOJ,et al.Reentry trajectory rapid optimization for hypersonic telescopic deformable vehicle[J].Systems Engineering and Electronics,2021,43(8):2232-2243.
doi: 10.12305/j.issn.1001-506X.2021.08.25 |
|
26 | WANGZ,WUZ.Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudo spectral method[J].Journal of Systems Engineering and Electronics,2016,27(2):434-441. |
27 | ANK,GUOZ Y,XUX P,et al.A framework of trajectory design and optimization for the hypersonic gliding vehicle[J].Aerospace Science and Technology,2020,106,106110. |
28 | TAOC.Trajectory optimization and tracking controller based on Gauss pseudo spectral method for hypersonic vehicle[J].Journal of System Simulation,2020,29(4):865-872. |
29 | 汤佳骏. 高超声速飞行器变质心辅助控制方法研究[D]. 南京: 南京航空航天大学, 2020. |
TANG J J. Research on moving centroid assisted control method for hypersonic vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | |
30 | LI Y B, XU L, YANG Y W, et al. Feasibility analysis of hypersonic vehicles trajectory under multiple constraints[C]//Proc. of the International Conference on Guidance, Navigation and Control, 2022: 5684-5695. |
31 | DALLE D J. Interactions between flight dynamics and propulsion systems of air-breathing hypersonic vehicles[D]. Ann Arbor: University of Michigan, 2013. |
[1] | Shaowei HUANG, Yanli DU, Yanbin LIU, Yueping WANG, Wu LIU. Adaptive sliding cooperative terminal guidance with finite-time convergence [J]. Systems Engineering and Electronics, 2025, 47(3): 961-969. |
[2] | Jinzhao ZHU, Di ZHOU, Xiaobo CHEN, Mingchun CAI. Fast time-varying maneuver model and trajectory prediction of near space hypersonic vehicle [J]. Systems Engineering and Electronics, 2025, 47(1): 244-253. |
[3] | Yuyu ZHAO, Chao SUO, Yuxiao WANG. Differential flatness-based tracking control method for hypersonic vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1084-1092. |
[4] | Peichen WANG, Xunliang YAN, Kuan WANG, Xiong ZHENG. Robust trajectory optimization method based on stochastic response surface and polynomial chaos [J]. Systems Engineering and Electronics, 2023, 45(10): 3226-3239. |
[5] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[6] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[7] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. |
[8] | Junbao WEI, Haiyan LI, Jing LI. Novel backstepping control for hypersonic vehicle with angle of attack constraint [J]. Systems Engineering and Electronics, 2022, 44(4): 1310-1317. |
[9] | Tengafei ZHANG, Chunlin GONG, Hua SU, Pengfei XUE. Trajectory optimization based on heat-augmented model and analysis of thermal protection structure [J]. Systems Engineering and Electronics, 2022, 44(3): 929-938. |
[10] | Tong AN, Peng WANG, Jianhua WANG, Guojian TANG, Yulong PAN, Haishan CHEN. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2022, 44(3): 956-966. |
[11] | Junbiao ZHANG, Jiajun XIONG, Xuhui LAN, Fan LI, Wenjian LIU, Qiushi XI. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering [J]. Systems Engineering and Electronics, 2022, 44(2): 628-636. |
[12] | Caihong YUE, Shengjing TANG, Jie GUO, Xiao WANG, Haoqiang ZHANG. Reentry trajectory rapid optimization for hypersonic telescopic deformable vehicle [J]. Systems Engineering and Electronics, 2021, 43(8): 2232-2243. |
[13] | Jianguo GUO, Yalu SU. Control system design of adaptive dynamic programming for hypersonic vehicle [J]. Systems Engineering and Electronics, 2021, 43(6): 1628-1635. |
[14] | Yan ZHAO, Jianfeng WU, Yupeng GAO. Information fusion method of hypersonic vehicle based on multi-agent navigation [J]. Systems Engineering and Electronics, 2020, 42(2): 405-413. |
[15] | Gaoyue WANG, Huijun ZHANG, Xian CHEN, Hao LI. Prediction method of spacecraft flight capability in atmospheric entry phase based on Gaussian process regression [J]. Systems Engineering and Electronics, 2020, 42(10): 2334-2339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||