Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (5): 1536-1550.doi: 10.12305/j.issn.1001-506X.2025.05.16
• Systems Engineering • Previous Articles
Ruijing CUI, Jianbin SUN, GKewei YAN, Minghao LI
Received:
2023-04-18
Online:
2025-06-11
Published:
2025-06-18
Contact:
Jianbin SUN
CLC Number:
Ruijing CUI, Jianbin SUN, GKewei YAN, Minghao LI. Construction method of equipment operational test indicator system based on UAF[J]. Systems Engineering and Electronics, 2025, 47(5): 1536-1550.
Table 1
UAF view models that needs to be developed in the process of indicator construction"
UAF模型(DoDAF模型) | 模型名称 | 模型要素 | 含义描述 | 实现形式 |
Sm-Ov(AV-1, OV-1a) | 摘要概述信息模型 | 使命任务、作战节点等信息 | 概括描述体系边界, 试验概念 | 作战示意概念图 |
Rq (—) | 需求图 | 体系需求、体系能力、标准作战活动、要素间的关系模型 | 作战试验体系需求, 使命任务 | SysML块定义图 |
Pm-En (—) | 参数环境模型 | 战场环境、环境参数条件、战场地理位置 | 描述作战试验体系战场环境 | SysML块定义图 |
En-Pf (—) | 战场环境剖面图 | 环境参数、任务段划分、环境类别 | 分解描述任务执行剖面过程中的战场环境 | 二维平面坐标图 |
Op-Cn(OV-3, OV-6) | 作战节点连接图 | 作战节点、节点之间的信息交互模型 | 作战节点之间资源交换的需求和信息的流向 | SysML块定义图 |
Op-Pr (OV-5) | 作战活动图 | 试验活动、甬道及对应的作战节点、活动之间的关系模型 | 描述体系活动及输入输出关系 | SysML活动图 |
Rs-Tx (SV-1, SV-2) | 资源分类图 | 系统/子系统、节点、要素之间的层级关系模型 | 描述系统/子系统等实体资源间的关系 | SysML块定义图 |
St-Tx(CV2) | 能力分类视图 | 体系层能力、任务层能力、能力之间的泛化关系模型 | 描述能力之间分类关系, 体系能力的细分 | SysML块定义图 |
Op-Tr (—) | 作战活动到能力的追溯 | 能力、作战活动、能力到作战活动之间的映射关系模型 | 描述能力到作战活动映射 | SysML块定义图 |
Table 2
Operational test meta-task list for unmanned aerial vehicle reconnaissance"
名称 | 作战节点 | 预期效果 | 参数环境 | 驱动能力 |
作战区域覆盖搜素Mt1 | 无人机(飞行导航系统、任务载荷系统) | 任务区域搜索全覆盖 | 电磁攻击环境、蓝方火力威胁 | 任务全域搜索能力 |
水面目标识别Mt2 | 无人机(任务载荷系统) | 识别发现红蓝目标 | 蓝方电磁攻击环境、蓝方火力威胁、蓝方伪装 | 水面目标识别能力 |
目标定位Mt3 | 无人机(任务载荷系统) | 获取目标位置坐标 | 蓝方电磁攻击环境、蓝方火力威胁、风况海浪 | 目标定位能力 |
持续跟踪Mt4 | 无人机(飞行导航系统、任务载荷系统) | 持续跟踪目标 | 蓝方电磁攻击环境、蓝方火力威胁、风况海浪 | 目标捕捉能力 |
态势信息收集Mt5 | 无人机(任务载荷系统) | 收集到蓝方目标的态势信息 | 蓝方电磁攻击环境、蓝方火力威胁、风况海浪 | 战略情报获取能力 |
情报信息回传Mt6 | 无人机(机载测控链路系统) | 回传情报成功 | 蓝方电磁攻击环境、蓝方火力威胁 | 信息传输能力 |
Table 3
Indicator of effectiveness for unmanned aerial vehicle reconnaissance operations test"
元任务 | 度量指标 | 参数环境 | 指标所属效能 |
Mt1 | 任务域搜索覆盖率 | 电磁攻击环境、蓝方火力威胁 | 搜索效能 |
Mt2 | 目标发现时间发现概率 | 电磁攻击环境、蓝方火力威胁、蓝方伪装 | 侦察效能 |
Mt3 | 目标定位精度 | 电磁攻击环境、蓝方火力威胁 | 侦察效能 |
Mt4 | 目标跟踪丢失率最大持续侦察时间 | 电磁攻击环境、蓝方火力威胁、蓝方航迹变化 | 侦察效能 |
Mt5 | 情报收集回传时延 | 电磁攻击环境、蓝方火力威胁、蓝方航迹变化 | 情报处理效能 |
Mt6 | 侦察图像显示质量 | 电磁攻击环境、蓝方火力威胁 | 通信效能 |
Mti(i=1, 2, …, 6) | 任务完成率 | 电磁攻击环境、蓝方火力威胁 | 反干扰效能 |
Mti(i=1, 2, …, 6) | 规避蓝方威胁生存率 | 蓝方火力威胁、电磁攻击环境 | 生存效能 |
22 | CAOY H,FENGS X,XUX F.Research on the concept representation method of combat task decomposition[J].Computer Simulation,2007,24(8):1-4. |
23 | 庞辉,方宗德.网络化协作任务分解策略与粒度设计[J].计算机集成制造系统,2008,14(3):425-430. |
PANGF,FANGZ D.Networked collaborative task decomposition strategy and granularity design[J].Computer Integrated Manufacturing Systems,2008,14(3):425-430. | |
24 | 王凯,赵定海,闫耀东.武器装备作战试验[M].北京:国防工业出版社,2017. |
WANGK,ZHAOD H,YANY D.Weapon and equipment operational testing[M].Beijing:National Defense Industry Press,2017. | |
25 |
GIACHETTIE R.Evaluation of the DoDAF meta-model' s support of systems engineering[J].Procedia Computer Science,2015,61,254-260.
doi: 10.1016/j.procs.2015.09.208 |
26 | Group Object Management. Unified Architecture Framework Profile (UAFP) Version 1.1[EB/OL]. [2023-03-18]. https://www.omg.org/spec/UAF/1.1/Beta1/UAFP/PDF. |
27 |
MARTINJ N,P O'NeilD.Enterprise architecture guide for the unified architecture framework[J].INCOSE International Symposium,2021,31(1):242-263.
doi: 10.1002/j.2334-5837.2021.00836.x |
28 | DIQ U,MAIX U,HANS.Capability-based requirement analysis method for joint operation command information system[J].Command Information System & Technology,2016,7(4):21-27. |
29 | 张洪碧,孟凡松,翟东航.某局部冲突中无人机作战运用及启示[J].指挥控制与仿真,2022,44(4):16-20. |
ZHANGH B,MENGF S,ZHAID H.The use and insight of UAV operations in a local conflict[J].Command and Control and Simulation,2022,44(4):16-20. | |
30 | 张威.应对大国竞争?中空长航时(MALE)无人机作战应用探析[J].坦克装甲车辆,2022(16):32-35. |
ZHANGW.Coping with great power competition? An explo ration of medium-altitude long-endurance (MALE) UAV com bat applications[J].Tank Armored Vehicle,2022(16):32-35. | |
31 | 赵薇,高喜俊,马彦恒.无人争锋: 近几场局部冲突中无人机作战运用探析[J].中国航天,2022(4):17-22. |
ZHAOW,GAOX J,MAY H.Unmanned battle: an analysis of the use of unmanned aerial vehicles in recent local conflicts[J].China Aerospace,2022(4):17-22. | |
32 | 赵永杰,田煜,乔建军.无人机系统的试验与鉴定[M].上海:上海交通大学出版社,2021. |
ZHAOY J,TIANY,QIAOJ J.Testing and qualification of unmanned aircraft systems[M].Shanghai:Shanghai Jiaotong University Press,2021. | |
1 | 孙嫒妮,吕学义,王申坪.装备作战试验指标体系构建问题研究[J].价值工程,2019,38(20):243-244. |
SUNY N,LVX Y,WANGS P.Research on the construction of equipment operational test index system[J].Value Engineering,2019,38(20):243-244. | |
2 | 孙鹏,朱浩洋,赵勇,等.装备作战试验评估指标体系构建研究[J].现代防御技术,2020,48(6):108-113. |
SUNP,ZHUH Y,ZHAOY,et al.Research on construction of evaluation index system of equipment combat test[J].Modern Defense Technology,2020,48(6):108-113. | |
3 | 王亮.武器装备作战试验鉴定使命指标构建方法研究[J].装备学院学报,2015,26(6):109-113. |
WANGL.Research on construction method of mission index for combat test evaluation of weapon equipment[J].Journal of Equipment College,2015,26(6):109-113. | |
4 | 薛益新,周玢.武器装备作战试验鉴定指标体系建立方法[J].装备学院学报,2016,27(4):102-107. |
XUEY X,ZHOUB.Establishment method of combat test evaluation index system for weapon equipment[J].Journal of Equipment College,2016,27(4):102-107. | |
5 | 曹冠平,王跃利,高明.基于UAF的联合防空反导体系能力指标需求生成方法研究[J].军事运筹与系统工程,2020,34(2):13-19. |
CAOG P,WANGY L,GAOM.Research on capability index requirement generation method of joint air defense and anti-missile system based on UAF[J].Military Operations Research and Systems Engineering,2020,34(2):13-19. | |
6 | 徐强,金振中,杨继坤.水面舰艇作战试验评估指标体系构建方法研究[J].现代防御技术,2021,49(3):47-54. |
XUQ,JINZ Z,YANGJ K.Research on construction method of evaluation index system of surface ship combat test[J].Modern Defense Technology,2021,49(3):47-54. | |
7 | 吴溪,王铁虎,高振辉.武器装备作战试验评估指标体系构建及优化方法[J].火力与指挥控制,2020,45(3):75-80. |
WUX,WANGT H,GAOZ H.Weapon and equipment operational test evaluation index system construction and optimization method[J].Firepower and Command and Control,2020,45(3):75-80. | |
8 | 刘千里,周亦军.舰载通信情报侦察系统作战效能指标体系构建[J].舰船电子工程,2021,41(5):4-7, 38. |
LIUQ L,ZHOUY J.Shipboard communication intelligence reconnaissance system operational effectiveness index system construction[J].Ship Electronics Engineering,2021,41(5):4-7, 38. | |
9 | GAGLIARDI M, WOOD B, MORROW T. Introduction to the mission thread workshop[EB/OL]. [2023-03-18]. https://insights.sei.cmu.edu/documents/1234/2013_005_001_63161.pdf. |
10 | BILLAUD S, DACLIN N, CHAPURLAT V. Interoperability as a key concept for the control and evolution of the System of Systems (SoS)[C]//Proc. of the 6th International IFIP Working Conference on Enterprise Interoperability, 2015: 53-63. |
11 | WANG N, LI K, XUE F, et al. Construction of a value-based equipment development decision analysis index system[J]// Journal of Physics: Conference Series, 2020, 1639(1): 012072. |
12 | 杨晨光,贾贞,刘志.基于联合使命线程的装备作战效能度量指标构建[J].指挥控制与仿真,2019,41(4):85-90. |
YANGC G,JIAZ,LIUZ.Construction of equipment combat effectiveness metrics based on joint mission threads[J].Command Control and Simulation,2019,41(4):85-90. | |
13 |
李琳琳,路云飞,张壮,等.基于信息优势的指控系统指标体系构建及建模[J].系统工程与电子技术,2018,40(3):577-582.
doi: 10.3969/j.issn.1001-506X.2018.03.14 |
LIL L,LUY F,ZHANGZ,et al.Construction and modeling of indicator system of accusation system based on information advantage[J].Journal of Systems Engineering and Electronics Technology,2018,40(3):577-582.
doi: 10.3969/j.issn.1001-506X.2018.03.14 |
|
14 | 范鹏程,祝利,安永旺,等.基于PFT的航天电子侦察系统作战效能指标体系构建[J].航天电子对抗,2017,33(4):26-30. |
FANP C,ZHUL,ANY W,et al.PFT-based aerospace electronic reconnaissance system operational effectiveness index system construction[J].Aerospace electronic countermeasures,2017,33(4):26-30. | |
15 | 赵志强. 装备作战试验效能评估指标体系构建方法研究[C]// 第二十届中国系统仿真技术及其应用学术年会, 2019: 345-350. |
ZHAO Z Q. Research on the construction method of equipment combat test effectiveness assessment index system[C]//Proc. of the 20th Annual Chinese Academic Conference on System Simulation Technology and its Applications, 2019: 345-350. | |
16 | 张传友,贺荣国,冯剑尘,等.武器装备联合试验体系构建方法与实践[M].北京:国防工业出版社,2017. |
ZHANGC Y,HER G,FENGJ D,et al.Weapon and equipment joint test system construction method and practice[M].Beijing:National Defense Industry Press,2017. | |
17 | 葛冰峰. 基于能力的武器装备体系结构建模、评估与组合决策分析方法[D]. 湖南: 国防科学技术大学, 2014. |
GE B F. Capability-based modeling, evaluation and portfolio decision analysis method for weapon and equipment architecture[D]. Hunan: National University of Defense Technology, 2014. | |
18 | 赵宇飞.基于属性提取的作战任务建模方法[J].舰船电子工程,2021,41(4):74-78. |
ZHAOY F.An attribute extraction-based approach to combat mission modeling[J].Naval Electronics Engineering,2021,41(4):74-78. | |
19 | 冯浩源,吕卫民,江式伟.保障使命任务分解与流程集成方法研究[J].舰船电子工程,2012,32(9):121-125. |
FENGH Y,LUW M,JIANGS W.Research on mission decomposition and process integration method[J].Ship Electronics Engineering,2012,32(9):121-125. | |
20 | 豆亚杰. 面向元活动分解的武器装备体系能力需求指标方案生成方法研究[D]. 长沙: 国防科学技术大学, 2011. |
DOU Y J. Research on meta-activity decomposition-oriented weapon and equipment system capability requirement index scheme generation method[D]. Changsha: University of Defense Science and Technology, 2011. | |
21 | 李慧,周林,辛文波.基于最优树的网络化作战装备体系结构优化[J].军事运筹与系统工程,2017,31(4):47-53. |
LIH,ZHOUL,XINW B.Optimization of networked combat equipment system structure based on optimal tree[J].Military Operations Research and Systems Engineering,2017,31(4):47-53. | |
22 | 曹裕华,冯书兴,徐雪峰.作战任务分解的概念表示方法研究[J].计算机仿真,2007,24(8):1-4. |
[1] | Wei CHEN, Congqing WANG, Qiang ZENG, Zhan LI. UAV coverage path planning for aircraft surface visual inspection [J]. Systems Engineering and Electronics, 2025, 47(4): 1206-1213. |
[2] | Ze GENG, Yanyan HUANG, Han ZHANG. UAV swarm anti-artillery search path planning based on artillery transfer path prediction [J]. Systems Engineering and Electronics, 2025, 47(4): 1222-1234. |
[3] | Zeyang YIN, Hao LIANG, Yuxin LIAO, Xiaofang CHEN, Yongfang XIE. UAV formation path planning based on reachable envelope analysis of dynamic obstacle [J]. Systems Engineering and Electronics, 2025, 47(4): 1275-1284. |
[4] | Shipei ZOU, Yuhui WANG, Hongrui LIU. Multi-round attack and defense game decision-making of UAVs based on RF-XGBoost algorithm [J]. Systems Engineering and Electronics, 2025, 47(2): 518-526. |
[5] | Zhongjie YIN, Bo HOU, Xiaolong JIN, Zhiliang FAN, Haiyang WANG. Covert spoofing method for anti-jamming UAV with array antenna [J]. Systems Engineering and Electronics, 2025, 47(2): 633-640. |
[6] | Jinxin LIU, Wei SHENG, Yumin ZHANG. Optimization algorithm for UAV formation consensus based on motion constraint [J]. Systems Engineering and Electronics, 2025, 47(1): 230-243. |
[7] | Pengtao LIU, Jing LEI, Wei LIU. Unmanned aerial vehicle-enabled edge computing: architecture, multiple access and computation offloading [J]. Systems Engineering and Electronics, 2024, 46(9): 3198-3210. |
[8] | Gang ZHONG, Jiangying ZHOU, Sen DU, Honghai ZHANG, Hao LIU. Short-time trajectory deviation detection method for UAV based on trajectory prediction [J]. Systems Engineering and Electronics, 2024, 46(8): 2696-2708. |
[9] | Xiaochen ZHAO, Dongtao ZHAO, Hang YUAN, Huan WANG, Qun ZHANG. Micro-motion parameters extraction for UAV under LPRF condition [J]. Systems Engineering and Electronics, 2024, 46(5): 1503-1513. |
[10] | Dong SUI, Zhenyu YANG, Songbin DING, Tingting ZHOU. Three-dimensional path planning of UAV based on EMSDBO algorithm [J]. Systems Engineering and Electronics, 2024, 46(5): 1756-1766. |
[11] | Jing YU, Xiaojun WU, Anlin JIANG, Enmi YONG. Research on UAV path planning method based on the multi-precision planning windows [J]. Systems Engineering and Electronics, 2024, 46(5): 1767-1776. |
[12] | Wenhao BI, Mengqi ZHANG, Fei GAO, Mi YANG, An ZHANG. Review on UAV swarm task allocation technology [J]. Systems Engineering and Electronics, 2024, 46(3): 922-934. |
[13] | Tao LIU, Shasha WANG, Chi ZHANG, Guanghan BAI, Junyong TAO. Resilience based self-organizing region coverage method for unmanned aerial vehicle swarm [J]. Systems Engineering and Electronics, 2024, 46(3): 942-952. |
[14] | Cheng GAO, Yanli DU, Yunong BU, Yanbin LIU, Yufei WANG. Heterogeneous UAV swarm grouping deployment for complex multiple tasks [J]. Systems Engineering and Electronics, 2024, 46(3): 972-981. |
[15] | Liguan PEI, Wei ZHOU, Jingdong LIU. Research on arrangement method of motorized chaff screen based on cuckoo bird search algorithm [J]. Systems Engineering and Electronics, 2024, 46(3): 814-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||