Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 2980-2987.doi: 10.12305/j.issn.1001-506X.2024.09.10
• Sensors and Signal Processing • Previous Articles Next Articles
Yalong WANG, Jiaheng WANG, Jun LI, qin HE, Zishu HE
Received:
2023-07-25
Online:
2024-08-30
Published:
2024-09-12
Contact:
Jun LI
CLC Number:
Yalong WANG, Jiaheng WANG, Jun LI, qin HE, Zishu HE. Direct data domain STAP method via joint-sparse characteristic of clutter and noise[J]. Systems Engineering and Electronics, 2024, 46(9): 2980-2987.
1 |
MELVIN W L . A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229 |
2 |
REED I S , MALLETT J D , BRENNAN L E . Rapid convergence rate in adaptive arrays[J]. IEEE Trans.on Aerospace and Electronic Systems, 1974, AES-10 (6): 853- 863.
doi: 10.1109/TAES.1974.307893 |
3 |
SONG D , CHEN S Y , LI H T , et al. Space-time adaptive processing via random matrix theory for finite training samples[J]. IEEE Sensors Journal, 2023, 23 (7): 7334- 7344.
doi: 10.1109/JSEN.2023.3245581 |
4 |
MELVIN W L . Space-time adaptive radar performance in hetero- geneous clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2000, 36 (2): 621- 633.
doi: 10.1109/7.845251 |
5 | CHEN W , XIE W C , WANG Y L . Short-range clutter suppression for airborne radar using sparse recovery and orthogonal projection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 3500605. |
6 | WANG L Y , HUANG P H , XIA X G , et al. Nonstationary clutter compensation for airborne surveillance radar systems with crab angle[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3505405. |
7 |
TAO F Y , WANG T , WU J X , et al. A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array[J]. Signal Processing, 2018, 152, 54- 62.
doi: 10.1016/j.sigpro.2018.05.015 |
8 | LI M , SUN G H , TONG J , et al. Covariance matrix whitening-based training sample selection method for airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (4): 647- 651. |
9 | 王晓明, 李军, 张圣鹋, 等. 基于稀疏恢复谱相似度的自适应样本筛选算法[J]. 系统工程与电子技术, 2018, 40 (5): 976- 981. |
WANG X M , LI J , ZHANG S M , et al. Adaptive sample selection algorithm based on sparse recovery spectral similarity[J]. System Engineering and Electronics, 2018, 40 (5): 976- 981. | |
10 |
刘汉伟, 张永顺, 王强, 等. 基于稀疏重构的机载雷达训练样本挑选方法[J]. 系统工程与电子技术, 2010, 38 (7): 1532- 1537.
doi: 10.3969/j.issn.1001-506X.2010.07.042 |
LIU H W , ZHANG Y S , WANG Q , et al. Training sample selection for airborne radar algorithm based on sparse reconstruction[J]. Systems Engineering and Electronics, 2010, 38 (7): 1532- 1537.
doi: 10.3969/j.issn.1001-506X.2010.07.042 |
|
11 | 李明, 何子述. 基于输出信杂噪比的机载雷达训练样本选择算法[J]. 电子科技大学学报, 2021, 50 (5): 676- 681. |
LI M , HE Z S . Output SCNR-based training samples selection method for airborne radar[J]. Journal of University of Electronic Science and Technology of China, 2021, 50 (5): 676- 681. | |
12 | DUAN K Q , XU H , YUAN H D , et al. Reduced-DOF three-dimensional STAP via subarray synthesis for nonsidelooking planar array airborne radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (4): 3311- 3325. |
13 | 侯铭, 谢文冲. 端射阵机载雷达稀疏恢复非平稳杂波抑制方法[J]. 现代雷达, 2023, 45 (2): 52- 59. |
HOU M , XIE W C . A non-stationary clutter suppression method for end-fire array airborne radar based on sparse reco-very[J]. Modern Radar, 2023, 45 (2): 52- 59. | |
14 |
XIONG Y Y , XIE W C , WANG Y L . Nonstationary clutter suppression based on four dimensional clutter spectrum for airborne radar with conformal array[J]. IEEE Access, 2022, 10, 51850- 51861.
doi: 10.1109/ACCESS.2022.3174550 |
15 |
SHI J X , XIE L , CHENG Z Y , et al. Angle-Doppler channel selection method for reduced-dimension STAP based on sequential convex programming[J]. IEEE Communications Letters, 2021, 25 (9): 3080- 3084.
doi: 10.1109/LCOMM.2021.3084973 |
16 |
ZHANG W , HE Z S , LI J , et al. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (1): 254- 264.
doi: 10.1109/TAES.2013.120145 |
17 | GOLDSTEIN J S , REED I S . Subspace selection for partially adaptive sensor array processing[J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33( (2): 539- 544. |
18 |
SARKAR T K , WANG H , PARK S , et al. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Trans.on Antennas and Propagation, 2001, 49 (1): 91- 103.
doi: 10.1109/8.910535 |
19 | CRISTALLINI D , BURGER W . A robust direct data domain approach for STAP[J]. IEEE Trans.on Signal Processing, 2011, 60 (3): 1283- 1294. |
20 |
CHOI W , SARKAR T K , WANG H , et al. Adaptive processing using real weights based on a direct data domain least squares approach[J]. IEEE Trans.on Antennas and Propagation, 2006, 54 (1): 182- 191.
doi: 10.1109/TAP.2005.859753 |
21 |
YANG Z C , LI X , WANG H Q , et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (5): 1214- 1218.
doi: 10.1109/LGRS.2012.2236639 |
22 | ZHANG W , AN R X , HE N Y , et al. Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (1): 785- 795. |
23 |
WANG D G , WANG T , CUI W C , et al. A clutter suppression algorithm via enhanced sparse bayesian learning for airborne radar[J]. IEEE Sensors Journal, 2023, 23 (10): 10900- 10911.
doi: 10.1109/JSEN.2023.3263919 |
24 |
SUN K , MENG H D , WANG Y L , et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91 (9): 2222- 2236.
doi: 10.1016/j.sigpro.2011.04.006 |
25 | YANG Z C , FA R , QIN Y L , et al. Direct data domain sparsity-based STAP utilizing subaperture smoothing techniques[J]. International Journal of Antennas and Propagation, 2015, 2015, 171808. |
26 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
27 | 何团, 唐波, 张进, 等. 基于改进OMP的非正侧视MIMO-STAP算法[J]. 探测与控制学报, 2019, 41 (5): 41- 46. |
HE T , TANG B , ZHANG J , et al. An non-side-looking MIMO-STAP algorithm based on improved OMP[J]. Journal of Detection and Control, 2019, 41 (5): 41- 46. | |
28 | KOH K , KIM S J , BOYD S . An interior-point method for large-scale l1-regularized logistic regression[J]. Journal of Machine learning research, 2007, 8 (7): 1519- 1555. |
29 |
GORODNITSKY I F , RAO B D . Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Trans.on Signal Processing, 1997, 45 (3): 600- 616.
doi: 10.1109/78.558475 |
30 |
JI S H , XUE Y , CARIN L . Bayesian compressive sensing[J]. IEEE Trans.on Signal Processing, 2008, 56 (6): 2346- 2356.
doi: 10.1109/TSP.2007.914345 |
31 | WANG Z T , XIE W C , DUAN K Q , et al. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130, 159- 168. |
32 | WANG Y K , HE Z S . Thinned knowledge-aided STAP by exploiting structural covariance matrix[J]. IET Radar, Sonar & Navigation, 2017, 11 (8): 1266- 1275. |
33 | BOYD S. Lecture notes for EE364B: convex optimization Ⅱ[EB/OL]. [2022-06-25]. http://stanford.edu/class/ee364b/ lectures.html. |
[1] | Cheng LIU, Huake WANG, Yinghui QUAN, Guisheng LIAO. Non-uniform distance ambiguity clutter suppression method for airborne multi-carrier frequency control array [J]. Systems Engineering and Electronics, 2024, 46(2): 459-469. |
[2] | Ran LAI, Gang SUN, Wei ZHANG, Tao ZHANG. Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm [J]. Systems Engineering and Electronics, 2023, 45(9): 2761-2767. |
[3] | Zhongyue LI, Tong WANG. Sparse Bayesian learning-based robust STAP algorithm [J]. Systems Engineering and Electronics, 2023, 45(10): 3032-3040. |
[4] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
[5] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
[6] | Xiaozhou CHEN, Qingjun XING, Lidong ZHANG. Slow-time-frequency-modulation jamming method forSTAP airborne early-warning radar [J]. Systems Engineering and Electronics, 2021, 43(11): 3177-3184. |
[7] | Yanhui ZHAO, Jianlong TANG, Jiyang LI, Luhao BI. Analysis of time-delay aliasing transmission jamming method for reduced dimension STAP airborne radar [J]. Systems Engineering and Electronics, 2020, 42(8): 1718-1725. |
[8] | Mingming TIAN, Guisheng LIAO, Yunpeng LI, Shengqi ZHU. Clutter properties and suppression method of hypersonic platform radar [J]. Systems Engineering and Electronics, 2020, 42(2): 301-308. |
[9] | PANG Xiaojiao, ZHAO Yongbo, CAO Chenghu, XU Baoqing, CHEN Sheng. Space-time processing method with temporal adaptive FIR filters [J]. Systems Engineering and Electronics, 2019, 41(12): 2669-2674. |
[10] | LI Zhihui, ZHANG Yongshun, GAO Qian, GUO Yiduo, WANG Qiang, LIU Yang. Off-grid STAP algorithm based on local search orthogonal matching pursuit [J]. Systems Engineering and Electronics, 2018, 40(6): 1221-1226. |
[11] | FENG Yang, LIAO Guisheng, XU Jingwei. Robust STAP method for supper-low-attitude target detection with airborne radar [J]. Systems Engineering and Electronics, 2017, 39(7): 1464-1470. |
[12] | XU Xue-fei, LIAO Gui-sheng, XU Jing-wei. Data domain compensation for STAP with maneuvering platform [J]. Systems Engineering and Electronics, 2016, 38(6): 1221-1227. |
[13] | GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust spacetime adaptive processing based on S transform for airborne radar [J]. Systems Engineering and Electronics, 2016, 38(6): 1268-1275. |
[14] | WANG Lu, WU Renbiao. Direct data domain space-time adaptive monopulse method [J]. Systems Engineering and Electronics, 2016, 38(12): 2738-2744. |
[15] | WEN Cai, WANG Tong, WU Jian-xin. Direct data domain approach with iterative space-time adaptive processing [J]. Systems Engineering and Electronics, 2014, 36(5): 831-837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||