Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 3185-3197.doi: 10.12305/j.issn.1001-506X.2024.09.30
• Guidance, Navigation and Control • Previous Articles
Xiaobin LI, Dong XU, Xue YANG
Received:
2023-08-23
Online:
2024-08-30
Published:
2024-09-12
Contact:
Xiaobin LI
CLC Number:
Xiaobin LI, Dong XU, Xue YANG. Trajectory tracking control with predefined dynamic performance for underactuated autonomous underwater vehicle[J]. Systems Engineering and Electronics, 2024, 46(9): 3185-3197.
1 |
LI Z F , WANG M , MA G . Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning[J]. ISA Transactions, 2023, 137, 122- 132.
doi: 10.1016/j.isatra.2022.12.003 |
2 | SHEN C , SHI Y , BUCKHAM B . Path-following control of an AUV: a multiobjective model predictive control approach[J]. IEEE Trans.on Control Systems Technology, 2018, 27 (3): 1334- 1342. |
3 |
ZHANG G C , HUANG H , QIN H D , et al. A novel adaptive second order sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151, 82- 92.
doi: 10.1016/j.oceaneng.2017.12.054 |
4 |
REZAZADEGAN F , SHOJAEI K , SHEIKHOLESLAM F , et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107, 246- 258.
doi: 10.1016/j.oceaneng.2015.07.040 |
5 |
ALI N , TAWIAH I , ZHANG W . Finite-time extended state observer based nonsingular fast terminal sliding mode control of autonomous underwater vehicles[J]. Ocean Engineering, 2020, 218, 108179.
doi: 10.1016/j.oceaneng.2020.108179 |
6 |
ZHANG Z Y , LIN M W , LI D J . A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents[J]. Ocean Engineering, 2022, 265, 112566.
doi: 10.1016/j.oceaneng.2022.112566 |
7 | WU H M, KARKOUB M. Hierarchical backstepping control for trajectory-tracking of autonomous underwater vehicles subject to uncertainties[C]//Proc. of the IEEE 14th International Conference on Control, Automation and Systems, 2014: 1191-1196. |
8 |
周铸, 李文魁, 吕志彪, 等. 扰动不确定的AUV改进反步控制[J]. 舰船电子工程, 2022, 42 (12): 169- 174.
doi: 10.3969/j.issn.1672-9730.2022.12.037 |
ZHOU Z , LI W K , LYU Z B , et al. Improved backstepping control of uncertain AUVs under perturbations[J]. Ship Electronic Engineering, 2022, 42 (12): 169- 174.
doi: 10.3969/j.issn.1672-9730.2022.12.037 |
|
9 | 李娟, 王佳奇, 丁福光. 基于反馈线性化的AUV三维轨迹跟踪滑模控制[J]. 哈尔滨工程大学学报, 2022, 43 (3): 348- 355. |
LI J , WANG J Q , DING F G . 3-D trajectory tracking sliding mode control of AUV based on feeedback linearization[J]. Journal of Harbin Engineering University, 2022, 43 (3): 348- 355. | |
10 | 李鑫滨, 王鹏, 骆曦, 等. 输入受限下欠驱动AUV轨迹跟踪滑模控制[J]. 水下无人系统学报, 2022, 30 (1): 44- 53. |
LI X B , WANG P , LUO X , et al. Trajectory tracking sliding mode control of underactuated AUV with input constraints[J]. Journal of Underwater Unmanned Systems, 2022, 30 (1): 44- 53. | |
11 | LI J , DU J L , CHEN C L P . Command-filtered robust adaptive NN control with the prescribed performance for the 3-D trajectory tracking of underactuated AUVs[J]. IEEE Trans.on Neural Networks and Learning Systems, 2021, 33 (11): 6545- 6557. |
12 |
ZHANG J L , XIANG X B , ZHANG Q , et al. Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics[J]. Ocean Engineering, 2020, 218, 108193.
doi: 10.1016/j.oceaneng.2020.108193 |
13 |
刘用, 杨晓飞, 夏金铭. 基于模糊算法的AUV避障与姿态控制[J]. 江苏大学学报(自然科学版), 2021, 42 (6): 655- 660.
doi: 10.3969/j.issn.1671-7775.2021.06.006 |
LIU Y , YANG X F , XIA J M . Obstacle-avoidance and attitude control of AUV based on fuzzy algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42 (6): 655- 660.
doi: 10.3969/j.issn.1671-7775.2021.06.006 |
|
14 |
LIANG X , QU X R , WANG N , et al. Three-dimensional trajectory tracking of an underactuated AUV based on fuzzy dynamic surface control[J]. IET Intelligent Transport Systems, 2020, 14 (5): 364- 370.
doi: 10.1049/iet-its.2019.0347 |
15 |
CHEN H X , TANG G Y , WANG S F , et al. Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2023, 275, 114109.
doi: 10.1016/j.oceaneng.2023.114109 |
16 |
ZHENG J Q , SONG L , LIU L Y , et al. Fixed-time extended state observer-based trajectory tracking control for autonomous underwater vehicles[J]. Asian Journal of Control, 2022, 24 (2): 686- 701.
doi: 10.1002/asjc.2624 |
17 |
SUN H B , ZONG G D , CUI J W , et al. Fixed-time sliding mode output feedback tracking control for autonomous underwater vehicle with prescribed performance constraint[J]. Ocean Engineering, 2022, 247, 110673.
doi: 10.1016/j.oceaneng.2022.110673 |
18 |
MOULAY E , LECHAPPE V , BERNUAU E , et al. Fixed-time sliding mode control with mismatched disturbances[J]. Automatica, 2022, 136, 110009.
doi: 10.1016/j.automatica.2021.110009 |
19 |
ZHENG J Q , SONG L , LIU L Y , et al. Fixed-time sliding mode tracking control for autonomous underwater vehicles[J]. Applied Ocean Research, 2021, 117, 102928.
doi: 10.1016/j.apor.2021.102928 |
20 | WANG H B, SU B, WANG Y L, et al. Fixed-time stabilization control for underactuated AUV with external disturbance[C]// Proc. of the IEEE Chinese Control Conference, 2019: 4513-4518. |
21 |
AN S , WANG X Y , WANG L J , et al. Observer based fixed-time integral sliding mode tracking control for underactuated AUVs via an event-triggered mechanism[J]. Ocean Engineering, 2023, 284, 115158.
doi: 10.1016/j.oceaneng.2023.115158 |
22 |
LIU Y , LIU X P , JING Y W . Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance[J]. Information Sciences, 2018, 468, 29- 46.
doi: 10.1016/j.ins.2018.08.029 |
23 |
SUN Y C , ZHANG Y , QIN H D , et al. Predefined-time prescribed performance control for AUV with improved performance function and error transformation[J]. Ocean Engineering, 2023, 281, 114817.
doi: 10.1016/j.oceaneng.2023.114817 |
24 |
LI Y , HE J Y , ZHANG Q , et al. Predefined-time fault-tolerant trajectory tracking control for autonomous underwater vehicles considering actuator saturation[J]. Actuators, 2023, 12 (4): 171- 192.
doi: 10.3390/act12040171 |
25 |
LI K W , LI Y M . Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (4): 1083- 1085.
doi: 10.1109/JAS.2023.123153 |
26 |
ZHANG L , JU X Z , CUI N G . Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110, 106511.
doi: 10.1016/j.ast.2021.106511 |
27 | ZHOU H P, ZHENG Z W, GUAN Z Y, et al. Control barrier function based nonlinear controller for automatic carrier landing[C]// Proc. of the IEEE 16th International Conference on Control, Automation, Robotics and Vision, 2020: 584-589. |
28 |
JU X Z , JIANG Y S , JING L , et al. Quantized predefined-time control for heavy-lift launch vehicles under actuator faults and rate gyro malfunctions[J]. ISA transactions, 2023, 138, 133- 150.
doi: 10.1016/j.isatra.2023.02.022 |
29 |
JU X Z , WEI C Z , XU H C , et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA transactions, 2022, 129, 55- 72.
doi: 10.1016/j.isatra.2022.02.003 |
30 |
ZHANG L , LI D Y , JING L , et al. Appointed-time cooperative guidance law with line-of-sight angle constraint and time-to-go control[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 3142- 3155.
doi: 10.1109/TAES.2022.3221059 |
31 |
CHEN Z R , JU X Z , WANG Z W , et al. The prescribed time sliding mode control for attitude tracking of spacecraft[J]. Asian Journal of Control, 2022, 24 (4): 1650- 1662.
doi: 10.1002/asjc.2569 |
32 | HARDY G H , LITTLEWOOD J E , PÓLYA G . Inequalities[M]. Cambridge: Cambridge university press, 1952. |
33 |
YANG M , ZHANG Q , XU K , et al. Adaptive differentiator-based predefined-time control for nonlinear systems subject to pure-feedback form and unknown disturbance[J]. Complexity, 2021, 2021, 7029058.
doi: 10.1155/2021/7029058 |
34 | NI J K , SHI P . Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone[J]. IEEE Trans.on Systems, Man, and Cybernetics-Systems, 2020, 51 (12): 7903- 7918. |
35 |
LIU B J , WANG W C , LI Y K , et al. Adaptive quantized predefined-time backstepping control for nonlinear strict-feedback systems[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (9): 3859- 3863.
doi: 10.1109/TCSII.2022.3175739 |
36 |
PETTERSEN K Y , EGELAND O . Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle[J]. IEEE Trans.on Automatic Control, 1999, 44 (1): 112- 115.
doi: 10.1109/9.739086 |
[1] | Bing QI, Jianhua CHENG, Yanchi ZHAO, Zili WANG. Precise temperature drift error estimation method for capacitive MEMS accelerometers based on micro-deformation analysis [J]. Systems Engineering and Electronics, 2024, 46(7): 2437-2445. |
[2] | Guangqiang LI, Wenchao DONG, Daqing ZHU, Yue YU, Hao CHEN, Shuanghe YU. 3D path planning for AUV based on improved whaleoptimization algorithm [J]. Systems Engineering and Electronics, 2023, 45(7): 2170-2182. |
[3] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[4] | Yongqi GAO, Weiqiang MA, Linsen ZHANG, Peng WANG, Miao ZHAO. Distributed multi-AUVs cooperative search method [J]. Systems Engineering and Electronics, 2022, 44(5): 1670-1676. |
[5] | Shiwei FAN, Ya ZHANG, Qiang HAO, Pan JIANG, Fei YU. Cooperative positioning and error estimation algorithm based on factor graph [J]. Systems Engineering and Electronics, 2021, 43(2): 499-507. |
[6] | Yanan LI, Haibin HUANG, Liangming CHEN, Yufei ZHUANG, Xiaoli WANG. Energy-optimal three-dimensional path planning for AUV under changing ocean current environment [J]. Systems Engineering and Electronics, 2021, 43(12): 3667-3674. |
[7] | LI Juan, ZHANG Bingjian, YANG Lijuan, WANG Mengdi. Multi-AUV target search algorithm with cognitive based adaptive optimization in unknown environment#br# [J]. Systems Engineering and Electronics, 2018, 40(8): 1839-1845. |
[8] | YAN Wei-sheng, QI Bei-bei, GAO Jian, LI Yong. Homing guidance algorithm for an autonomous underwater vehicle based on dipolar field [J]. Systems Engineering and Electronics, 2016, 38(4): 902-908. |
[9] | WANG Lei, CHENG Xiang-hong, RAN Chang-yan, CHEN Hong-mei, HU Jie. Improved multiple model algorithm based on Bayesian network for AUV integrated navigation [J]. Systems Engineering and Electronics, 2015, 37(4): 901-906. |
[10] | LIU Ming-yong, DONG Ting-ting, ZHANG Li-chuan. Underwater SLAM navigation algorithm based on random beacons [J]. Systems Engineering and Electronics, 2015, 37(12): 2830-2834. |
[11] | YAN Wei-sheng, ZUO Lei, CUI Rong-xin. Model based adaptive coverage control for multiple autonomous underwater vehicles [J]. Systems Engineering and Electronics, 2015, 37(11): 2574-2578. |
[12] | YANG Yong-peng, ZHAO Yu-xin, HAO Yan-ling, DU Hang-yuan. Decoupling control system for AUV hovering nearsurface [J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 572-577. |
[13] | LIU Yu. Autonomous underwater vehicle control based on adaptive backstepping method [J]. Journal of Systems Engineering and Electronics, 2011, 33(3): 638-642. |
[14] | HUANG Yu, HAO Yan-ling. Novel measurement method of AUV ground speed based on underwater geomagnetic anomaly localization [J]. Journal of Systems Engineering and Electronics, 2011, 33(10): 2306-2310. |
[15] | CHANG Fei, WU Xiao-yue. Modeling and algorithm of data transmission system of ground station based on radial basis function neural network [J]. Journal of Systems Engineering and Electronics, 2010, 32(9): 1946-1950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||