Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (8): 2730-2737.doi: 10.12305/j.issn.1001-506X.2024.08.20
• Systems Engineering • Previous Articles
Wenjian YING, Yusen CHENG, Xuan WANG, Shiyan SUN
Received:
2022-04-06
Online:
2024-07-25
Published:
2024-08-07
Contact:
Yusen CHENG
CLC Number:
Wenjian YING, Yusen CHENG, Xuan WANG, Shiyan SUN. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[J]. Systems Engineering and Electronics, 2024, 46(8): 2730-2737.
1 | 石君友. 测试性设计分析与验证[M]. 北京: 国防工业出版社, 2011. |
SHI J Y . Analysis and verification of testability design[M]. Beijing: National Defense Industry Press, 2011. | |
2 | 陈锋, 孙世岩, 严平, 等. 面向任务的舰炮制导弹药测试性指标确定方法[J]. 探测与控制学报, 2018, 40 (1): 105- 110. |
CHEN F , SUN S Y , YAN P , et al. Task oriented method for determining testability index of naval gun guided ammunition[J]. Journal of Detection and Control, 2018, 40 (1): 105- 110. | |
3 | 林志文, 贺喆, 杨士元. 基于多信号模型的雷达测试性设计分析[J]. 系统工程与电子技术, 2009, 31 (11): 2781- 2784. |
LIN Z W , HE Z , YANG S Y . Analysis of radar testability design based on multi signal model[J]. Systems Engineering and Electronics, 2009, 31 (11): 2781- 2784. | |
4 |
刘晓白, 梁鸿, 王丹. 基于相关性模型的舰船系统测试性建模与分析[J]. 舰船科学技术, 2017, 39 (11): 158- 163.
doi: 10.3404/j.issn.1672-7649.2017.11.030 |
LIU X B , LIANG H , WANG D . Testability modeling and ana-lysis of ship system based on correlation model[J]. Ship Science and Technology, 2017, 39 (11): 158- 163.
doi: 10.3404/j.issn.1672-7649.2017.11.030 |
|
5 |
周平, 刘东风. 基于多信号模型的舰船柴油机测试性研究[J]. 测试技术学报, 2011, 25 (2): 95- 99.
doi: 10.3969/j.issn.1671-7449.2011.02.001 |
ZHOU P , LIU D F . Research on testability of marine diesel engine based on multi signal model[J]. Journal of Testing Technology, 2011, 25 (2): 95- 99.
doi: 10.3969/j.issn.1671-7449.2011.02.001 |
|
6 |
余龙海, 史贤俊. 基于AHP-FCE的导弹装备测试性评估[J]. 测控技术, 2015, 34 (12): 122- 126.
doi: 10.3969/j.issn.1000-8829.2015.12.032 |
YU L H , SHI X J . Missile equipment testability evaluation based on AHP-FCE[J]. Measurement and Control Technology, 2015, 34 (12): 122- 126.
doi: 10.3969/j.issn.1000-8829.2015.12.032 |
|
7 | 常春贺, 曹鹏举, 杨江平, 等. 基于研制阶段试验数据的复杂装备测试性评估[J]. 中国机械工程, 2011, 23 (13): 1577- 1581. |
CHANG C H , CAO P J , YANG J P , et al. Testability evaluation of complex equipment based on test data at the development stage[J]. China Mechanical Engineering, 2011, 23 (13): 1577- 1581. | |
8 | 梁潜德, 张雷. 基于信息融合的装备测试性评估[J]. 火力与指挥控制, 2018, 43 (3): 177- 180. |
LIANG Q D , ZHANG L . Equipment testability evaluation based on information fusion[J]. Fire Control & Command Control, 2018, 43 (3): 177- 180. | |
9 |
邓露, 许爱强, 席靓, 等. 基于多源信息加权融合的研制阶段测试性评估方法[J]. 计算机测量与控制, 2014, 22 (8): 2508- 2511.
doi: 10.3969/j.issn.1671-4598.2014.08.052 |
DENG L , XU A Q , XI L , et al. Testability evaluation method for development stage based on weighted fusion of multi-source information[J]. Computer Measurement and Control, 2014, 22 (8): 2508- 2511.
doi: 10.3969/j.issn.1671-4598.2014.08.052 |
|
10 | 刘磊, 宋家友, 姚淼. 研制阶段测试性验证与评价的动态贝叶斯方法[J]. 计算机工程与设计, 2017, 38 (6): 1516- 1521. |
LIU L , SONG J Y , YAO M . Dynamic Bayesian method for testability verification and evaluation in development stage[J]. Computer Engineering and Design, 2017, 38 (6): 1516- 1521. | |
11 | 赵晨旭. 测试性增长试验理论与方法研究[D]. 长沙: 国防科学技术大学, 2016. |
ZHAO C X. Research on the theory and method of testable growth test[D]. Changsha: National University of Defense Technology, 2016. | |
12 | 杨刚, 吴旭升, 孙盼, 等. 基于性能的复杂装备现场可更换单元规划[J]. 系统工程与电子技术, 2021, 43 (8): 2174- 2180. |
YANG G , WU X S , SUN P , et al. Performance based field replaceable unit planning for complex equipment[J]. Systems Engineering and Electronics, 2021, 43 (8): 2174- 2180. | |
13 | 王京, 李天梅, 何华锋, 等. 多源测试性综合评估数据等效折合模型与方法研究[J]. 兵工学报, 2017, 38 (1): 151- 159. |
WANG J , LI T M , HE H F , et al. Research on equivalent conversion model and method of multi-source testable comprehensive evaluation data[J]. Acta Armamentarii, 2017, 38 (1): 151- 159. | |
14 | 王超. 虚实结合的测试性试验与综合评估技术[D]. 长沙: 国防科学技术大学, 2014. |
WANG C. Testability test and comprehensive evaluation technology based on the combination of deficiency and reality[D]. Changsha: National University of Defense Technology, 2014. | |
15 | 王旋, 狄鹏, 尹东亮. 基于Lance距离和信度熵的冲突证据融合方法[J]. 系统工程与电子技术, 2022, 44 (2): 592- 602. |
WANG X , DI P , YIN D L . Conflict evidence fusion method based on Lance distance and belief entropy[J]. Systems Engineering and Electronics, 2022, 44 (2): 592- 602. | |
16 | FANG Y , JIE C , YI B L . Improvement of DS evidence theory for multi-sensor conflicting information[J]. Symmetry, 2017, 9 (5): 69. |
17 | DENG Y . Deng entropy: a generalized Shannon entropy to measure uncertainty[J]. Manuscript, 2015, 91, 549- 553. |
18 | XIAO F Y . Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46, 23- 32. |
19 | 王旋, 狄鹏. 基于虚实试验数据融合的装备测试性评估方法[J]. 舰船电子工程, 2021, 41 (6): 131- 134. |
WANG X , DI P . Equipment testability evaluation method based on virtual and real test data fusion[J]. Naval Electronic Engineering, 2021, 41 (6): 131- 134. |
[1] | Yiyu XU, Changfeng CHEN, Xuelin YUAN, Zhengkun CHEN, Zhijian ZHOU. GNSS spoofing jamming detection based on altimeter assistance [J]. Systems Engineering and Electronics, 2024, 46(5): 1484-1492. |
[2] | Jianjie QIU, Yichao CAI, Hao LI, Quanyin HUANG. Grey theory track association algorithm based on dynamic estimation feedback [J]. Systems Engineering and Electronics, 2024, 46(4): 1401-1411. |
[3] | Kang LIU, Minghao HE, Jun HAN, Mingyue FENG, Xinglin DU. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor [J]. Systems Engineering and Electronics, 2023, 45(1): 101-107. |
[4] | Taiyang HU, Jinyu ZHANG, Hailiang LU, Pengfei LI, Yinan LI, Rongchuan LYU. Distributed synthetic aperture microwave radiometric high-resolution imaging algorithm based on data fusion [J]. Systems Engineering and Electronics, 2022, 44(8): 2403-2409. |
[5] | Lulu ZHANG, Siya CHEN, Guang JIN. Evaluation modeling of spacecraft radiation resistance equivalent test [J]. Systems Engineering and Electronics, 2021, 43(9): 2673-2677. |
[6] | Shuangming LI, Xin GUAN, Ao LIU. Heterogeneous data fusion method based on intuitionistic fuzzy discout operator [J]. Systems Engineering and Electronics, 2021, 43(2): 311-317. |
[7] | Daheng ZHANG, Yingjun ZHANG, Chuang ZHANG. Data fusion of electronic navigational chart and radar images based on Faster R-CNN [J]. Systems Engineering and Electronics, 2020, 42(6): 1267-1273. |
[8] | SHI Haijie, LI Jinghua, YUE Lu. Meteorological target detection method and simulation of airborne weather radar in cruise stage [J]. Systems Engineering and Electronics, 2018, 40(2): 280-286. |
[9] | LI Hongfei, WANG Jinran, JING Zhongliang. Consensus combination rule to deal with conflicting evidence [J]. Systems Engineering and Electronics, 2018, 40(10): 2166-2172. |
[10] | WANG Jun, LUO Pengcheng, ZHOU Jinglun, LAN Xinzhang. Survey on military aircraft fly-away cost estimation methods [J]. Systems Engineering and Electronics, 2017, 39(9): 2012-2021. |
[11] | LI Zi-yue, ZHANG Lin, CHEN Shan-qiu, YANG Chun-ning, MA Long-hua. Ultra-tightly coupled SINS/GNSS navigation technology review and prospect [J]. Systems Engineering and Electronics, 2016, 38(4): 866-874. |
[12] | LIU Jieyu, SHEN Qiang, LI Can, QIN Weiwei. Fusion method of MEMS gyro array signals based on optimal KF [J]. Systems Engineering and Electronics, 2016, 38(12): 2705-2710. |
[13] | ZHAN Kun, JIANG Hong, ZHAO Tian-qu, YU Yao-zhong. Multi-target joint tracking and classification based on model-class-matched PHD filter and TBM [J]. Systems Engineering and Electronics, 2016, 38(10): 2235-2243. |
[14] | SONG Ya-fei, WANG Xiao-dan, LEI Lei, XING Ya-qiong. Credibility attenuation model for evidence fusion in temporal domain [J]. Systems Engineering and Electronics, 2015, 37(7): 1489-1493. |
[15] | ZOU Yong-qiang, GAO Xun-zhang, LI Xiang. High precision coherent compensation for multiband radar data at low SNR [J]. Systems Engineering and Electronics, 2015, 37(1): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||