Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (8): 2721-2729.doi: 10.12305/j.issn.1001-506X.2024.08.19
• Systems Engineering • Previous Articles
Xuehao LIU1,2, Wenxue LIU1, Chaosan YANG1, Wenjing ZHU1,2, Yu SONG1,2, Jinhai LI1,2,*
Received:
2024-01-10
Online:
2024-07-25
Published:
2024-08-07
Contact:
Jinhai LI
CLC Number:
Xuehao LIU, Wenxue LIU, Chaosan YANG, Wenjing ZHU, Yu SONG, Jinhai LI. Optimization method of user quantity prediction based on GPR model[J]. Systems Engineering and Electronics, 2024, 46(8): 2721-2729.
Table 1
Kernel functions and their expressions"
核函数名 | k(z, z′)= |
常数核 | φ12 |
线性核 | zTz′ |
Matérn核 | |
平方指数核 | |
由平方指数核得到的周期核 | |
平方指数自动相关性确定(automatic relevance determination, ARD)核 |
Table 2
Common model performance evaluation indicators"
性能评估指标 | 表达式 |
RMS | |
MAE | |
MBE | |
R2 |
11 | LIANG Y Z. An automatic detection method for epileptic EEG signals based on empirical mode decomposition and permutation entropy[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. |
12 | 杨雨亭. 基于RF特征优选的ISSA-SVM变压器故障诊断方法[D]. 南京: 南京邮电大学, 2023. |
YANG Y T. ISSA-SVM transformer fault diagnosis method based on RF feature selection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. | |
13 | ZHANG S Y, TAN W A, LI Y B. Survey of kernel extreme learning machine kernel function based on the perspective of kernel parameter optimization time[C]//Proc. of the 4th Annual International Conference on Network and Information Systems for Computers, 2018: 430-433. |
14 | PARAL P , GHOSH S , CHATTERJEE A , et al. Automatic relevance determination kernel-embedded Gaussian process regression for sonar-based human leg localization with a mobile robot[J]. IEEE Sensors Letters, 2022, 7 (1): 6000504. |
15 | DONG W H , LI X F , BI D J , et al. Matern kernel adaptive filtering with Nystrom approximation for indoor localization[J]. IEEE Trans.on Instrumentation and Measurement, 2023, |
16 | TRONARP F, KARVONEN T, SARKKA S. Mixture representation of the Matern class with applications in state space approximations and Bayesian quadrature[C]//Proc. of the IEEE 28th International Workshop on Machine Learning for Signal Processing, 2018. |
17 | LIU K L , LI Y , HU X S , et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithiumion batteries[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (6): 3767- 3777. |
18 | TAGHAVIFAR H , MARDANI A . Gaussian process with automatic relevance determination predictive model for energy management of electric direct-drive wheels: experimental validation[J]. IEEE Trans.on Vehicular Technology, 2023, 73 (2): 1910- 1917. |
19 | LIU T, CHAI W, WANG C C. Soft-sensors based on Gaussian process regression for wastewater treatment plants[C]//Proc. of the IEEE 11th Data Driven Control and Learning Systems Conference, 2022: 437-442. |
20 | 杨成飞. 基于高斯过程的智能采样策略研究[D]. 合肥: 中国科学技术大学, 2019. |
YANG C F. Adaptive sampling strategy based on Gaussian process[D]. Hefei: University of Science and Technology of China, 2019. | |
1 |
王继民, 彭波. 搜索引擎用户访问量模型[J]. 计算机工程与应用, 2004, (25): 9-11, 30.
doi: 10.3321/j.issn:1002-8331.2004.25.003 |
WANG J M , PENG B . Modeling quantity of users' access for search engine[J]. Computer Engineering and Applications, 2004, (25): 9-11, 30.
doi: 10.3321/j.issn:1002-8331.2004.25.003 |
|
2 | 程鹏超, 杜军平, 薛哲. 基于多路交叉的用户金融行为预测[J]. 智能系统学报, 2021, 16 (2): 378- 384. |
CHENG P C , DU J P , XUE Z . Prediction of user financial behavior based on multi-way crossing[J]. CAAI Transactions on Intelligent Systems, 2021, 16 (2): 378- 384. | |
3 | XIAO H B, XIAO J H, DENG X W, et al. Traffic flow prediction based on traffic and meteorological data fusion in non-stationary environments[C]//Proc. of the International Conference on Electronic Information Technology and Smart Agriculture, 2021: 154-158. |
4 | LEE J, LEE H Y, KIM N W, et al. A study on online arima algorithms applying various gradient descent optimization algorithms for time series prediction[C]//Proc. of the International Conference on Information and Communication Technology Convergence, 2021: 1104-1106. |
5 |
PENG Y N , XIANG W L . Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction[J]. Physica A: Statistical Mechanics and its Applications, 2020, 549, 123913.
doi: 10.1016/j.physa.2019.123913 |
6 |
LI R M , HU Y C , LIANG Q H . T2F-LSTM method for long-term traffic volume prediction[J]. IEEE Trans.on Fuzzy Systems, 2020, 28 (12): 3256- 3264.
doi: 10.1109/TFUZZ.2020.2986995 |
7 | BECKERS T. An introduction to Gaussian process models[EB/OL]. [2024-01-10]. https://arXivpreprintarXiv:2102.05497, 2021. |
8 | KRISHNAN V , CHANDRA K . Probability and random proce-sses[M]. Hoboken: John Wiley & Sons, 2016. |
9 | JAKKALA K. Deep Gaussian processes: a survey[EB/OL]. [2024-01-10]. https://arXivpreprintarXiv:2106.12135, 2021. |
10 | WILLIAMS C K I , RASMUSSEN C E . Gaussian processes for machine learning[M]. Cambridge: Massachusetts Institute of Technology press, 2006. |
11 | 梁袁泽. 基于经验模态分解与排列熵的癫痫脑电信号自动检测方法[D]. 南京: 南京邮电大学, 2023. |
21 |
ALBRECHT T , RAUSCH T M , DERRA N D . Call me maybe: methods and practical implementation of artificial intelligence in call center arrivals' forecasting[J]. Journal of Business Research, 2021, 123, 267- 278.
doi: 10.1016/j.jbusres.2020.09.033 |
22 | BERGMEIR C , COSTANTINI M , BENITEZ J M . On the usefulness of cross-validation for directional forecast evaluation[J]. Computational Statistics & Data Analysis, 2014, 76, 132- 143. |
23 |
CERQUEIRA V , TORGO L , MOZETIC I . Evaluating time series forecasting models: an empirical study on performance estimation methods[J]. Machine Learning, 2020, 109 (11): 1997- 2028.
doi: 10.1007/s10994-020-05910-7 |
24 | ARLOT S , CELISSE A . A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4 (2010): 40- 79. |
25 | BERGMEIR C , HYNDMAN R J , KOO B . A note on the validity of cross-validation for evaluating autoregressive time series prediction[J]. Computational Statistics & Data Analysis, 2018, 120, 70- 83. |
26 | GUI C, SUN B L, SONG Y, et al. Variable length sliding window-based network coding algorithm in MANETs[C]//Proc. of the International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2017. |
27 |
MENG J F , GONG L , XU J . Sliding-window QPS (SW-QPS) a perfect parallel iterative switching algorithm for input-queued switches[J]. ACM Sigmetrics Performance Evaluation Review, 2021, 48 (3): 71- 76.
doi: 10.1145/3453953.3453969 |
28 | LI L G, ZHAO J S, QIANG B H, et al. Prediction method of fan main shaft fault state based on sliding window characteristics[C]//Proc. of the 10th International Conference on Internet Computing for Science and Engineering, 2021: 67-73. |
29 | VARDHAN B V S, KHEDKAR M, SURESH V. Hyper-parameter tuned short term load forecasting using stochastic classifier-regression mapping for power system operator[C]//Proc. of the IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference, 2022. |
30 | LI Z H, SHOEMAKER C A. Hyper-parameter optimization for deep learning by surrogate-based model with weighted distance exploration[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2021: 917-925. |
31 | SODA上海开放数据创新应用大赛. 摩拜上海城区用户使用数据[EB/OL]. [2024-01-10]. https://shanghai.sodachallenges.com/data.html. |
[1] | Qiuping XU, Kai ZHAO, Detao QU, Gangdun LIU. LCSS-based fast matching method of target trajectory rule [J]. Systems Engineering and Electronics, 2022, 44(4): 1263-1269. |
[2] | Gaoyue WANG, Huijun ZHANG, Xian CHEN, Hao LI. Prediction method of spacecraft flight capability in atmospheric entry phase based on Gaussian process regression [J]. Systems Engineering and Electronics, 2020, 42(10): 2334-2339. |
[3] | GUAN Xin, GUAN Xin, TAO Li, YI Xiao. Unbiased algorithm of multiple platform passive location based on sliding window [J]. Systems Engineering and Electronics, 2016, 38(9): 1981-1986. |
[4] | ZHANG Guo-dong,LIU Zhong. Measurement data pre-processing method based on the improvement of the SVM and the confidence level detection in sliding window type [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 930-934. |
[5] | ZHANG Yi, ZHANG Qiang, WANG Yu, OUYANG Zhi-xin. Adaptive red-black window algorithm for SAR image speckle reduction [J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1576-1580. |
[6] | SHI Bin-bin,QIAN Linjie, CHENG Zhu, HUANGFU Kan. Sliding window RLS method based on CORDIC [J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2304-2309. |
[7] | AO Fu-jiang, DU Jing, YAN Yue-jin, HUANG Ke-di. Online mining closed frequent itemsets over a stream sliding window [J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1235-1240. |
[8] | HOU Wei, YANG Bing-ru, WU Chen-sheng, ZHOU Zhun. Multi-relational pattern frequency update algorithm based on sliding window [J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 671-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||