Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 1986-1994.doi: 10.12305/j.issn.1001-506X.2024.06.16
• Systems Engineering • Previous Articles
Jiajun WU, Chun SU, Yuru ZHANG
Received:
2023-06-03
Online:
2024-05-25
Published:
2024-06-04
Contact:
Chun SU
CLC Number:
Jiajun WU, Chun SU, Yuru ZHANG. Remaining useful life prediction based on double self-attention mechanism and long short-term memory network[J]. Systems Engineering and Electronics, 2024, 46(6): 1986-1994.
Table 2
Selected sensor features in each sub-data set"
子数据集 | 选取的传感器特征编号 |
FD001 | 11, 9, 4, 12, 7, 14, 15, 21, 2, 3, 20, 13, 8, 17, 6 |
FD002 | 13, 11, 15, 4, 14, 9, 8, 2, 12, 3, 7, 21, 20, 17, 6, 16 |
FD003 | 11, 9, 4, 12, 7, 14, 15, 21, 2, 3, 20, 13, 8, 17, 6 |
FD004 | 13, 11, 15, 4, 14, 9, 8, 2, 12, 3, 7, 21, 20, 17, 6, 16 |
Table 4
Results of ablation experiments"
方法 | FD001 | FD004 | |||||||
RMSE | STD | Score | STD | RMSE | STD | Score | STD | ||
LSTM | 13.21 | 0.51 | 306.06 | 54.58 | 19.46 | 1.05 | 3 786.78 | 1 691.87 | |
RF+LSTM | 13.20 | 0.33 | 306.42 | 45.93 | 19.14 | 0.56 | 3 658.44 | 1 498.73 | |
RF+Feats+LSTM | 12.52 | 0.57 | 253.09 | 26.14 | 18.81 | 0.45 | 2 381.83 | 468.51 | |
本文方法 | 12.357 | 0.31 | 269.28 | 22.76 | 18.27 | 0.44 | 1 793.52 | 171.05 |
Table 5
Comparison of RUL predictions with different methods"
方法 | 年份 | FD001 | FD002 | FD003 | FD004 | |||||||
RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score | |||||
MLP[ | 2017 | 16.78 | 561 | 28.78 | 14 027 | 18.47 | 480 | 30.96 | 10 444 | |||
DCNN[ | 2018 | 12.61 | 273 | 22.36 | 10 412 | 12.64 | 284 | 23.31 | 12 466 | |||
RNN[ | 2018 | 13.44 | 339 | 24.03 | 14 245 | 13.36 | 316 | 24.02 | 13 931 | |||
DLSTM[ | 2020 | 14.57 | — | 23.20 | — | 14.92 | — | 28.72 | — | |||
VAE+LSTM[ | 2020 | 15.88 | 322 | 25.78 | 4 990 | 14.29 | 309 | 23.93 | 4 720 | |||
CNN+Bi-LSTM[ | 2020 | 10.74 | — | 15.20 | — | 13.85 | — | 18.60 | — | |||
MCLSTM[ | 2021 | 13.71 | 315 | — | — | — | — | 23.81 | 4 826 | |||
Attention+LSTM[ | 2021 | 14.54 | 322 | — | — | — | — | 27.08 | 5 649 | |||
Multi-attention+TCN[ | 2022 | 13.25 | 235 | 19.57 | 1 655 | 13.43 | 239 | 21.69 | 2 415 | |||
Double attention-based architecture[ | 2022 | 12.25 | 198 | 17.08 | 1 575 | 13.39 | 290 | 19.86 | 1 741 | |||
Dual attention+GRU[ | 2023 | 11.77 | — | 16.09 | — | 11.66 | — | 20.10 | — | |||
MMoE+BiGRU[ | 2022 | 13.22 | — | 18.26 | — | 13.79 | — | 18.38 | — | |||
RCNN+ABi-LSTM[ | 2023 | 12.98 | 258 | 19.16 | 2 980 | 13.24 | 246 | 22.29 | 3 795 | |||
本文方法 | 2023 | 12.35 | 269 | 15.13 | 924 | 13.24 | 487 | 18.27 | 1 794 |
1 | OMSHI E M , GRALL A . Replacement and imperfect repair of deteriorating system: study of a CBM policy and impact of repair efficiency[J]. Reliability Engineering & System Safety, 2021, 215, 107905. |
2 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
3 | NIETO P J G , GARCIA-GONZALO E , LASHERAS F S , et al. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability[J]. Reliability Engineering & System Safety, 2015, 138, 219- 231. |
4 |
SCHONLAU M , ZOU R Y . The random forest algorithm for statistical learning[J]. The Stata Journal, 2020, 20 (1): 3- 29.
doi: 10.1177/1536867X20909688 |
5 | LIN M Q , YOU Y Q , WANG W , et al. Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification[J]. Reliability Engineering & System Safety, 2023, 230, 108978. |
6 | XU Z Y , SALEH J H . Machine learning for reliability engineering and safety applications: review of current status and future opportunities[J]. Reliability Engineering & System Safety, 2021, 211, 107530. |
7 | LI X , DING Q , SUN J Q . Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172, 1- 11. |
8 |
ZHU J , CHEN N , PENG W W . Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (4): 3208- 3216.
doi: 10.1109/TIE.2018.2844856 |
9 | SHANG Z W , ZHANG B R , LI W X , et al. Machine remaining life prediction based on multi-layer self-attention and temporal convolution network[J]. Complex & Intelligent Systems, 2022, 8 (2): 1409- 1424. |
10 |
ZHANG J J , WANG P , YAN R Q , et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems, 2018, 48, 78- 86.
doi: 10.1016/j.jmsy.2018.05.011 |
11 |
SU C , LI L , WEN Z J . Remaining useful life prediction via a variational autoencoder and a time-window-based sequence neural network[J]. Quality and Reliability Engineering International, 2020, 36 (5): 1639- 1656.
doi: 10.1002/qre.2651 |
12 | 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42 (7): 1637- 1644. |
LI J F , CHEN Y X , XIANG H C , et al. Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2020, 42 (7): 1637- 1644. | |
13 |
CHEN Z H , WU M , ZHAO R , et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Trans.on Industrial Electronics, 2021, 68 (3): 2521- 2531.
doi: 10.1109/TIE.2020.2972443 |
14 | ZHANG Y , XIN Y Q , LIU Z W , et al. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE[J]. Reliability Engineering & System Safety, 2022, 220, 108263. |
15 | 闫啸家, 梁伟阁, 张钢, 等. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45 (3): 931- 940. |
YAN X J , LIANG W G , ZHANG G , et al. Prediction method for mechanical equipment based on RCNN-ABiLSTM[J]. Systems Engineering and Electronics, 2023, 45 (3): 931- 940. | |
16 |
MA X L , TAO Z M , WANG Y H , et al. Long short-term memory neural for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.
doi: 10.1016/j.trc.2015.03.014 |
17 |
WANG H , PENG M J , MIAO Z , et al. Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory[J]. ISA Transactions, 2021, 108, 333- 342.
doi: 10.1016/j.isatra.2020.08.031 |
18 |
GU L D , ZHENG R , ZHOU Y F , et al. Remaining useful life prediction using composite health index and hybrid LSTM-SVR model[J]. Quality and Reliability Engineering International, 2022, 38 (7): 3559- 3578.
doi: 10.1002/qre.3151 |
19 |
DU W B , WANG Y L , QIAO Y . Recurrent spatial-temporal attention network for action recognition in videos[J]. IEEE Trans.on Image Processing, 2018, 27 (3): 1347- 1360.
doi: 10.1109/TIP.2017.2778563 |
20 | PAN T Y , CHEN J L , YE Z S , et al. A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines[J]. Reliability Engineering & System Safety, 2022, 225, 108610. |
21 | LIU L , SONG X , ZHOU Z T . Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture[J]. Reliability Engineering & System Safety, 2022, 221, 108330. |
22 |
KHELIF R , CHEBEL-MORELLO B , MALINOWSKI S , et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Trans.on Industrial Electronics, 2017, 64 (3): 2276- 2285.
doi: 10.1109/TIE.2016.2623260 |
23 |
汪千程, 苏春, 文泽军. 基于协整分析的风力机多工况监测与故障诊断[J]. 中国机械工程, 2022, 33 (13): 1596- 1603.
doi: 10.3969/j.issn.1004-132X.2022.13.010 |
WANG Q C , SU C , WEN Z J . Multi-condition monitoring and fault diagnosis of wind turbines based on cointegration analysis[J]. China Mechanical Engineering, 2022, 33 (13): 1596- 1603.
doi: 10.3969/j.issn.1004-132X.2022.13.010 |
|
24 | 张紫嫣, 卢文科, 左锋, 等. 基于分段线性插值法的应变片式扭矩传感器的温度补偿[J]. 电子测量技术, 2022, 45 (8): 143- 147. |
ZHANG Z Y , LU W K , ZUO F , et al. Temperature compensation of strain gauge torque sensor based on piecewise linear interpolation method[J]. Electronic Measurement Technology, 2022, 45 (8): 143- 147. | |
25 |
CHENG Y J , ZENG J Y , WANG Z L , et al. A health state-related ensemble deep learning method for aircraft engine remaining useful life prediction[J]. Applied Soft Computing, 2023, 135, 110041.
doi: 10.1016/j.asoc.2023.110041 |
26 |
GONG R , LI J X , WANG C L . Remaining useful life prediction based on multisensor fusion and attention TCN-BiGRU model[J]. IEEE Sensors Journal, 2022, 22 (21): 21101- 21110.
doi: 10.1109/JSEN.2022.3208753 |
27 | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the International Conference on Prognostics and Health Management, 2008: 1-9. |
28 |
LI H , ZHAO W , ZHANG Y X , et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89, 106113.
doi: 10.1016/j.asoc.2020.106113 |
29 |
ZHANG C , LIM P , QIN A K , et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318.
doi: 10.1109/TNNLS.2016.2582798 |
30 |
XIA M , ZHENG X , IMRAN M , et al. Data-driven prognosis method using hybrid deep recurrent neural network[J]. Applied Soft Computing, 2020, 93, 106351.
doi: 10.1016/j.asoc.2020.106351 |
31 | REMADNA I, TERRISSA S L, ZEMOURI R, et al. Leveraging the power of the combination of CNN and bi-directional LSTM networks for aircraft engine RUL estimation[C]//Proc. of the Prognostics and Health Management Conference, 2020: 116-121. |
32 | XIANG S , QIN Y , LUO J , et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 216, 107927. |
33 | LI Y F , CHEN Y F , SHAO H N , et al. A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units[J]. Reliability Engineering & System Safety, 2023, 239, 109514. |
[1] | Shaobo CHEN, Jiamin YAN, Kuichen BU. Anti-intercept maneuver method of vehicle based on prediction of miss distance [J]. Systems Engineering and Electronics, 2023, 45(9): 2922-2930. |
[2] | Shaochi CHENG, Guangrong YOU. Research on the method of simplifying evaluation index based on improved random forest algorithm [J]. Systems Engineering and Electronics, 2023, 45(7): 2108-2113. |
[3] | Lican DAI, Xin LIU, Haiying ZHANG, Xiang DAI, Chenggang WANG. Flight target track prediction based on Kalman filter algorithm unfolding [J]. Systems Engineering and Electronics, 2023, 45(6): 1814-1820. |
[4] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[5] | Botao SONG, Guangliang XU. Missile trajectory prediction method based on LSTM and 1DCNN [J]. Systems Engineering and Electronics, 2023, 45(2): 504-512. |
[6] | Ruiping JI, Chengyi ZHANG, Yan LIANG, Yuedong WANG. Trajectory prediction of boost-phase ballistic missile based on LSTM [J]. Systems Engineering and Electronics, 2022, 44(6): 1968-1976. |
[7] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[8] | Yifan ZHANG, Shuanghui ZHANG, Yongxiang LIU, Feng JING. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network [J]. Systems Engineering and Electronics, 2021, 43(10): 2775-2781. |
[9] | Xiaoyue HU, Kai KANG, Hua QIAN, Shunqing ZHANG. Link adaptation algorithm based on LSTM network for LEO satellite [J]. Systems Engineering and Electronics, 2021, 43(1): 237-243. |
[10] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. |
[11] | ZHANG Yan, WANG Cunsong, LU Ningyun, JIANG Bin. Remaining useful life prediction for aeroengine based on thesimilarity of degradation characteristics [J]. Systems Engineering and Electronics, 2019, 41(6): 1414-1421. |
[12] |
SUN Jian-zhong, ZUO Hong-fu.
Bayesian method for system real-time performance reliability assessment [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1790-1796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||