Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 419-427.doi: 10.12305/j.issn.1001-506X.2024.02.06
• Electronic Technology • Previous Articles
Weifeng SUN, Linlin ZHAO, Yonggang JI, Yongshou DAI
Received:
2022-12-02
Online:
2024-01-25
Published:
2024-02-06
Contact:
Weifeng SUN
CLC Number:
Weifeng SUN, Linlin ZHAO, Yonggang JI, Yongshou DAI. A false plot identification method based on multi-frame clustering for compact HFSWR[J]. Systems Engineering and Electronics, 2024, 46(2): 419-427.
1 |
SUN W F , HUANG W M , JI Y G , et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (2): 1041- 1051.
doi: 10.1109/TGRS.2019.2943065 |
2 |
CHEN J S , DAO D T , CHIEN H . Ship echo identification based on norm-constrained adaptive beamforming for an arrayed high frequency coastal radar[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (2): 1143- 1153.
doi: 10.1109/TGRS.2020.3000903 |
3 |
YANG K X , ZHANG L , NIU J , et al. Analysis and estimation of shipborne HFSWR target parameters under the influence of platform motion[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (6): 4703- 4716.
doi: 10.1109/TGRS.2020.3023025 |
4 |
PARK S , CHO C J , KU B , et al. Compact HF surface wave radar data generating simulator for ship detection and tracking[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (6): 969- 973.
doi: 10.1109/LGRS.2017.2691741 |
5 |
JI Y G , WANG Y M , SUN W F , et al. Ship monitoring with bistatic compact HFSWR of small aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 1139- 1149.
doi: 10.1109/JSTARS.2022.3142008 |
6 |
SUN W F , PANG Z Z , HUANG W M , et al. Vessel velocity estimation and tracking from Doppler echoes of T/R-R composite compact HFSWR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4427- 4440.
doi: 10.1109/JSTARS.2021.3071625 |
7 | YANG Z Q , ZHOU H , TIAN Y W , et al. Improved CFAR detection and direction finding on time-frequency plane with high-frequency radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3505005. |
8 |
LYU Z , YU C J , LIU A J . Prediction method for ionospheric clutter suppression for HFSWR[J]. Electronics Letters, 2019, 55 (15): 857- 859.
doi: 10.1049/el.2019.1160 |
9 |
LU B , WEN B Y , TIAN Y W , et al. A vessel detection method using compact-array HF radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (11): 2017- 2021.
doi: 10.1109/LGRS.2017.2748142 |
10 |
YANG Y L , MAO X P , HOU Y G , et al. A two-step method for ionospheric clutter mitigation for HFSWR with two dimensional dual-polarized received array[J]. IEEE Access, 2020, 8, 105903- 105913.
doi: 10.1109/ACCESS.2020.2999463 |
11 |
CONTE E , LOPS M . Clutter-map CFAR detection for range-spread targets in non-Gaussian clutter[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33 (2): 432- 443.
doi: 10.1109/7.575877 |
12 | WANG X Y , LI Y , ZHANG N , et al. An automatic target detection method based on multi-direction dictionary learning for HFSWR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3504105. |
13 |
JANGAL F , SAILLANT S , HELIER M . Wavelet contribution to remote sensing of the sea and target detection for a high-frequency surface wave radar[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5 (3): 552- 556.
doi: 10.1109/LGRS.2008.923211 |
14 |
LI Q Z , ZHANG W D , LI M , et al. Automatic detection of ship targets based on wavelet transform for HF surface wavelet radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (5): 714- 718.
doi: 10.1109/LGRS.2017.2673806 |
15 |
WU M K , ZHANG L , NIU J , et al. Target detection in clutter/interference regions based on deep feature fusion for HFSWR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5581- 5595.
doi: 10.1109/JSTARS.2021.3082044 |
16 |
ZHANG W D , LI Q Z , WU Q M J , et al. A novel ship target detection algorithm based on error self-adjustment extreme learning machine and cascade classifier[J]. Cognitive Computation, 2019, 11 (1): 110- 124.
doi: 10.1007/s12559-018-9606-5 |
17 | 林强, 彭威, 胡先进. 基于改进KNN的雷达点迹真伪鉴别方法[J]. 现代雷达, 2020, 42 (4): 41- 45. |
LIN Q , PENG W , HU X J . Method of radar plot true and false identification based on improved KNN[J]. Modern Radar, 2020, 42 (4): 41- 45. | |
18 | 袁子寅. 天波雷达数据预处理与数据关联技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
YUAN Z Y. Research on OTHR data pre-processing and data association technology[D]. Harbin: Harbin Institute of Technology, 2016. | |
19 | CHENG Y, ZHAO Y. Radar false alarm plots elimination based on multi-feature evaluation[C]//Proc. of the 5th International Conference on Intelligent Autonomous Systems, 2022: 72-77. |
20 | 张迪. 复杂条件下雷达点迹处理方法研究[D]. 西安: 西安电子科技大学, 2020. |
ZHANG D. Research on radar plot processing under complex conditions[D]. Xi'an: Xidian University, 2020. | |
21 | 张佳琦, 陶海红, 张修社, 等. 一种利用量测空间聚类的多帧检测前跟踪算法[J]. 西安电子科技大学学报, 2021, 48 (5): 231- 238. |
ZHANG J Q , TAO H H , ZHANG X S , et al. A multi-frame track before detect algorithm utilizing measurement space clustering[J]. Journal of Xidian University, 2021, 48 (5): 231- 238. | |
22 | 张佳琦, 陶海红, 张修社. 量测点迹空间聚类的多传感器多帧检测算法[J]. 系统工程与电子技术, 2021, 43 (6): 1533- 1540. |
ZHANG J Q , TAO H H , ZHANG X S . A multi-sensor multi-frame detection algorithm based on measurement plots space clustering[J]. Systems Engineering and Electronics, 2021, 43 (6): 1533- 1540. | |
23 | ESTER M, KRIEDGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231. |
24 | NIE F P , XUE J J , WU D Y , et al. Coordinate descent method for k-means[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44 (5): 2371- 2385. |
25 | FENG H L , DONG J Y . Reliability analysis for WSN based on a modular k-out-of-n system[J]. Journal of Systems Engineering and Electronics, 2017, 28 (2): 407- 412. |
26 |
AREF Y , CEMAL K , ASEF Y , et al. Automatic fuzzy-DBSCAN algorithm for morphological and overlapping datasets[J]. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1245- 1253.
doi: 10.23919/JSEE.2020.000095 |
27 | SMOLA A J , LKOPF B S . A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222. |
28 |
RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating Errors[J]. Nature, 1986, 323 (6088): 533- 536.
doi: 10.1038/323533a0 |
29 | HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 (1/3): 489- 501. |
30 | ZHANG L, XIONG W, NIU J, et al. Track matching based on ELM for HFSWR[C]//Proc. of the Chinese Automation Congress, 2019: 1753-1757. |
31 | SUN W F, HUANG W M, JI Y G, et al. Vessel tracking with small-aperture compact high-frequency surface wave radar[C]// Proc. of the IEEE Oceans Marseille, 2019. |
[1] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Multi-frequency modulation spectrum fusion enhanced recognition method for pneumatic targets [J]. Systems Engineering and Electronics, 2023, 45(7): 2043-2050. |
[2] | Youran XIA, Jun GUAN, Wenjun YI. Projectile parameter identification: extreme learning machine optimized by improved particle swarm [J]. Systems Engineering and Electronics, 2023, 45(2): 521-529. |
[3] | Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN [J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764. |
[4] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[5] | Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model [J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687. |
[6] | Qing DONG, Benwei LI, Siqi YAN, Renjun QIAN. Prediction of turboshaft engine acceleration process performance parameters based on BSO-ELM [J]. Systems Engineering and Electronics, 2021, 43(8): 2181-2188. |
[7] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[8] | Ling YANG, Li CHENG, Qin HAN, Aonan ZHAO. Online blind equalization algorithm using extreme learning machine based on Kalman filter [J]. Systems Engineering and Electronics, 2021, 43(3): 623-630. |
[9] | Xing LIU, Houqing XIONG, Jianyin ZHAO, Min ZHU. State prediction method of online non-stationary dynamic system based on improved sparse KELM [J]. Systems Engineering and Electronics, 2020, 42(9): 2022-2032. |
[10] | Min ZHU, Qi LIU, Xing LIU, Qing XU. Fault detection method for avionics based on LMKL and OC-ELM [J]. Systems Engineering and Electronics, 2020, 42(6): 1424-1432. |
[11] | Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM [J]. Systems Engineering and Electronics, 2020, 42(1): 223-229. |
[12] | FANG Hao, LI Aihua, PAN Yulong, WANG Xuejin, HE Chuan, WU Yuanjiang. Evaluation for infrared scene simulation based on self-learning framework [J]. Systems Engineering and Electronics, 2019, 41(2): 266-272. |
[13] | SHI Weiguo, XU Chao. Time delay prediction based on phase space reconstruction and robust extreme learning machine [J]. Systems Engineering and Electronics, 2019, 41(2): 416-421. |
[14] | XU Ximeng, YANG Rennong, FU Ying, ZHAO Yu. Target threat assessment in air combat based on ELM_AdaBoost strong predictor [J]. Systems Engineering and Electronics, 2018, 40(8): 1760-1768. |
[15] | ZHANG Dongdong, SUN Rui, GAO Jun. Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning [J]. Systems Engineering and Electronics, 2017, 39(9): 2149-2156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||