Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 391-400.doi: 10.12305/j.issn.1001-506X.2024.02.03
• Electronic Technology • Previous Articles
Lei YU1, Qiuyue DENG1, Liying ZHENG2,*, Haoyu WU1
Received:
2022-11-12
Online:
2024-01-25
Published:
2024-02-06
Contact:
Liying ZHENG
CLC Number:
Lei YU, Qiuyue DENG, Liying ZHENG, Haoyu WU. Second-order progressive feature fusion network for image super-resolution reconstruction[J]. Systems Engineering and Electronics, 2024, 46(2): 391-400.
Table 1
Performance comparison of models under different feature fusion methods"
特征融合方法 | PSNR/SSIM | ||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | |
HFF | 38.17/0.961 1 | 33.78/0.919 2 | 32.25/0.900 5 | 32.48/0.931 0 | 38.95/0.977 8 |
BFF | 38.16/0.961 0 | 33.78/0.918 7 | 32.25/0.900 4 | 32.47/0.930 9 | 38.96/0.977 8 |
IFF | 38.16/0.961 0 | 33.81/0.918 9 | 32.24/0.900 2 | 32.49/0.931 1 | 38.95/0.977 7 |
PFF | 38.17/0.961 1 | 33.78/0.919 3 | 32.26/0.900 5 | 32.52/0.931 4 | 39.07/0.977 8 |
Table 3
Performance comparison of models with and without second-order feature fusion mechanism"
二阶特征融合机制 | PSNR/SSIM | ||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | |
无 | 38.16/0.960 9 | 33.77/0.918 9 | 32.25/0.900 5 | 32.47/0.930 6 | 39.03/0.977 7 |
有 | 38.17/0.961 1 | 33.78/0.919 3 | 32.26/0.900 5 | 32.52/0.931 4 | 39.07/0.977 8 |
Table 4
Performance comparison of models with different number of blocks"
模块数量 | PSNR/SSIM | ||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | |
n=6 | 38.17/0.961 1 | 33.78/0.919 3 | 32.26/0.900 5 | 32.52/0.931 4 | 39.07/0.977 8 |
n=8 | 38.20↑/0.961 2↑ | 33.81↑/0.919 5↑ | 32.28↑/0.901 0↑ | 32.65↑/0.932 4↑ | 39.11↑/0.977 9↑ |
n=10 | 38.21↑/0.961 2 | 33.81/0.919 2↓ | 32.29↑/0.900 9↓ | 32.66↑/0.932 5↑ | 39.08↓/0.977 9 |
Table 5
Average PSNR/SSIM comparison of different methods under benchmark test sets (scaling factor is ×2)"
模型 | PSNR/SSIM | |||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | ||
Bicubic | 33.66/0.929 9 | 30.24/0.868 8 | 29.56/0.843 1 | 26.88/0.840 3 | 30.80/0.933 9 | |
SRCNN | 36.66/0.954 2 | 32.45/0.906 7 | 31.36/0.887 9 | 29.50/0.894 6 | 35.60/0.966 3 | |
FSRCNN | 37.00/0.955 8 | 32.63/0.908 8 | 31.53/0.892 0 | 29.88/0.902 0 | 36.67/0.971 0 | |
VDSR | 37.53/0.958 7 | 33.03/0.912 4 | 31.90/0.896 0 | 30.76/0.914 0 | 37.22/0.975 0 | |
DRCN | 37.63/0.958 8 | 33.04/0.911 8 | 31.85/0.894 2 | 30.75/0.913 3 | 37.55/0.973 2 | |
LapSRN | 37.52/0.959 1 | 32.99/0.912 4 | 31.80/0.895 2 | 30.41/0.910 3 | 37.27/0.974 0 | |
IDN | 37.83/0.960 0 | 33.30/0.914 8 | 32.08/0.898 5 | 31.27/0.919 6 | 38.01/0.974 9 | |
CARN | 37.76/0.959 0 | 33.52/0.916 6 | 32.09/0.897 8 | 31.92/0.925 6 | 38.36/0.976 5 | |
MCSR | 38.03/0.960 0 | 33.58/0.917 0 | 32.18/0.899 0 | 31.94/0.926 0 | -/- | |
SPFFSR | 38.20/0.961 2 | 33.81/0.919 5 | 32.28/0.901 0 | 32.65/0.932 4 | 39.11/0.977 9 |
Table 6
Average PSNR/SSIM of different methods under the benchmark test sets (scaling factor is ×3)"
模型 | PSNR/SSIM | ||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | |
Bicubic | 30.39/0.868 2 | 27.55/0.774 2 | 27.21/0.738 5 | 24.46/0.734 9 | 26.95/0.855 6 |
SRCNN | 32.75/0.909 0 | 29.30/0.821 5 | 28.41/0.786 3 | 26.24/0.798 9 | 30.48/0.911 7 |
FSRCNN | 33.18/0.914 0 | 29.37/0.824 0 | 28.53/0.791 0 | 26.43/0.808 0 | 31.10/0.921 0 |
VDSR | 33.66/0.921 3 | 29.77/0.831 4 | 28.82/0.797 6 | 27.14/0.827 9 | 32.01/0.934 0 |
DRCN | 33.82/0.922 6 | 29.76/0.831 1 | 28.80/0.796 3 | 27.15/0.827 6 | 32.24/0.934 3 |
LapSRN | 33.81/0.922 0 | 29.79/0.832 5 | 28.82/0.798 0 | 27.07/0.827 5 | 32.21/0.935 0 |
IDN | 34.11/0.925 3 | 29.99/0.835 4 | 28.95/0.801 3 | 27.42/0.835 9 | 32.71/0.938 1 |
CARN | 34.29/0.925 5 | 30.29/0.840 7 | 29.06/0.803 4 | 28.06/0.849 3 | 33.50/0.944 0 |
MCSR | 34.44/0.926 0 | 30.37/0.842 0 | 29.11/0.805 0 | 28.10/0.851 0 | -/- |
SPFFSR | 34.65/0.928 7 | 30.55/0.845 6 | 29.22/0.808 0 | 28.63/0.860 4 | 34.13/0.947 8 |
Table 7
Average PSNR/SSIM of different methods under the benchmark test sets (scaling factor is ×4)"
模型 | PSNR/SSIM | ||||
Set5 | Set14 | BSD100 | Urban100 | Manga109 | |
Bicubic | 28.42/0.810 4 | 26.00/0.702 7 | 25.96/0.667 5 | 23.14/0.657 7 | 24.89/0.786 6 |
SRCNN | 30.48/0.862 6 | 27.50/0.751 3 | 26.90/0.710 1 | 24.52/0.722 1 | 27.58/0.855 5 |
FSRCNN | 30.72/0.866 0 | 27.61/0.755 0 | 26.98/0.715 0 | 24.62/0.728 0 | 27.90/0.861 0 |
VDSR | 31.35/0.883 8 | 28.01/0.767 4 | 27.29/0.725 1 | 25.18/0.752 4 | 28.83/0.887 0 |
DRCN | 31.53/0.885 4 | 28.02/0.767 0 | 27.23/0.723 3 | 25.14/0.751 0 | 28.93/0.885 4 |
LapSRN | 31.54/0.885 2 | 28.09/0.770 0 | 27.32/0.727 5 | 25.21/0.756 2 | 29.09/0.890 0 |
IDN | 31.82/0.890 3 | 28.25/0.773 0 | 27.41/0.729 7 | 25.41/0.763 2 | 29.41/0.894 2 |
CARN | 32.13/0.893 7 | 28.60/0.780 6 | 27.58/0.734 9 | 26.07/0.783 7 | 30.47/0.908 4 |
MCSR | 32.19/0.894 0 | 28.63/0.782 0 | 27.58/0.736 0 | 26.04/0.783 0 | -/- |
SPFFSR | 32.44/0.898 2 | 28.79/0.786 1 | 27.70/0.739 7 | 26.49/0.796 6 | 31.14/0.915 5 |
1 | LIU A R , LIU Y H , GU J J , et al. Blind image super-resolution: a survey and beyond[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 45 (5): 5461- 5480. |
2 | TIAN C W, ZHANG X Y, LIN J C W, et al. Generative adversarial networks for image super-resolution: a survey[EB/OL]. [2023-04-09]. https://arxiv.org/abs/2204.13620. |
3 | 毕笃彦, 王世平, 刘坤, 等. 基于并行映射卷积网络的超分辨率重建算法[J]. 系统工程与电子技术, 2018, 40 (8): 1873- 1880. |
BI D Y , WANG S P , LIU K , et al. Super-resolution algorithm based on parallel mapping convolution network[J]. Systems Engi- neering and Electronics, 2018, 40 (8): 1873- 1880. | |
4 |
TAO H J , LU X B . Contour-based smoky vehicle detection from surveillance video for alarm systems[J]. Signal, Image and Video Processing, 2019, 13 (2): 217- 225.
doi: 10.1007/s11760-018-1348-z |
5 | 王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42 (1): 222- 233. |
WANG G , ZHOU R F , ZOU Y K . Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42 (1): 222- 233. | |
6 | 陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43 (1): 154- 161. |
CHEN S Z , CAO S P , CUI M Y , et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics &Information Technology, 2021, 43 (1): 154- 161. | |
7 |
CHEN H G , HE X H , QING L B , et al. Real-world single image super resolution: a brief review[J]. Information Fusion, 2022, 79, 124- 145.
doi: 10.1016/j.inffus.2021.09.005 |
8 | BASHIR S M A , WANG Y , KHAN M , et al. A comprehensive review of deep learning based single image super-resolution[J]. PeerJ Computer Science, 2021, 7, e621. |
9 | ZHU X B , LI Z Z , LOU J G , et al. Video super-resolution based on a spatio-temporal matching network[J]. Pattern Re-cognition, 2021, 110 (2): 107619. |
10 | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proc. of the 13th European Conference on Computer Vision,, 2014: 184-199. |
11 | DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Proc. of the 14th European Conference on Computer Vision, 2016: 391-407. |
12 | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883. |
13 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654. |
14 | AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 256-272. |
15 | TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2790-2798. |
16 | TAI Y, YANG J, LIU X M, et al. MemNet: a persistent memory network for image restoration[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4549-4557. |
17 | 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26 (3): 605- 618. |
CHENG D Q , GUO X , CHEN L L , et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics, 2021, 26 (3): 605- 618. | |
18 | QIN J H , HUANG Y J , WEN W S . Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020, 379, 334- 342. |
19 | LI J C, FANG F M, MEI K F, et al. Multi-scale residual network for image super-resolution[C]//Proc. of the 15th European Conference on Computer Vision, 2018: 517-532. |
20 | MUQEET A , IQBAL M T B , BAE S H . Hybrid residual attention network for single image super resolution[J]. IEEE Access, 2019, 137020- 137029. |
21 | KEYS R . Cubic convolution interpolation for digital image processing[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1981, 29 (6): 1153- 1160. |
22 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645. |
23 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5838-5843. |
24 | HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 723-731. |
25 | ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3262-3271. |
[1] | Jiayi LUO, Xuanpeng LI, Jianghao LI, Qifan XUE, Feng YANG, Weigong ZHANG. Radiation signal sorting method based on PDW multi-feature fusion [J]. Systems Engineering and Electronics, 2024, 46(1): 80-87. |
[2] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[3] | Yanyan HUANG, Shaoyan GAI, Feipeng DA. Image matching algorithm based on attention mechanism of three branch spatial transformation [J]. Systems Engineering and Electronics, 2023, 45(11): 3363-3373. |
[4] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[5] | Xiaofeng ZHAO, Fei WU, Yebin XU, Jiahui NIU, Wei CAI, Zhili ZHANG. Evaluation method of infrared camouflage effect based on background restoration [J]. Systems Engineering and Electronics, 2022, 44(8): 2554-2561. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[8] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[9] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[10] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[11] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[12] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[13] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[14] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[15] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||