Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 381-390.doi: 10.12305/j.issn.1001-506X.2024.02.02
• Electronic Technology • Previous Articles
Guomin SUN1, Wei ZHANG1,2,*, Huaizong SHAO1, Yi FANG3, Pengfei LI2
Received:
2023-03-28
Online:
2024-01-25
Published:
2024-02-06
Contact:
Wei ZHANG
CLC Number:
Guomin SUN, Wei ZHANG, Huaizong SHAO, Yi FANG, Pengfei LI. A low-rank tensor completion based method for electromagnetic big data annotation recovery[J]. Systems Engineering and Electronics, 2024, 46(2): 381-390.
Table 2
Two-dimensional ground truth matrix of simulated data"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.614 87 | 0.621 79 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.66 73 | 0.608 51 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.612 46 | 0.658 91 | 0.576 56 |
5 | 0.599 11 | 0.577 54 | 0.572 07 | 0.613 90 | 0.618 08 |
6 | 0.614 58 | 0.612 74 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.602 26 | 0.604 20 | 0.615 27 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.607 95 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.600 10 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
Table 3
Two-dimensional observed matrix with 30% pixels missing of simulated data"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0 | 0 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0 |
3 | 0.580 36 | 0.667 30 | 0 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0 | 0.658 91 | 0.576 56 |
5 | 0 | 0.577 54 | 0.572 07 | 0.613 90 | 0 |
6 | 0.614 58 | 0 | 0 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0 | 0 | 0 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
Table 4
Recovery of the proposed method for two-dimensional matrix with 30% pixels missing of simulated data"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.614 87 | 0.621 79 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.667 30 | 0.608 51 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.612 46 | 0.658 91 | 0.576 56 |
5 | 0.599 11 | 0.577 54 | 0.572 07 | 0.613 90 | 0.618 08 |
6 | 0.614 58 | 0.612 74 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.602 26 | 0.604 20 | 0.615 27 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.607 95 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.600 10 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
Table 5
Recovery of the proposed method for three-dimensional matrix with 30% pixels missing of simulated data"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.594 83 | 0.617 11 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.611 59 |
3 | 0.580 36 | 0.667 30 | 0.620 17 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.609 59 | 0.658 91 | 0.576 56 |
5 | 0.592 87 | 0.577 54 | 0.572 07 | 0.613 90 | 0.604 18 |
6 | 0.614 58 | 0.607 41 | 0.602 28 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.599 34 | 0.611 75 | 0.605 28 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.620 13 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.621 17 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
Table 6
Recovery of the proposed method for four-dimensional matrix with 30% pixels missing of simulated data"
序号 | 列序号 | ||||
1 | 2 | 3 | 4 | 5 | |
1 | 0.605 63 | 0.562 11 | 0.597 82 | 0.614 41 | 0.621 90 |
2 | 0.607 62 | 0.591 46 | 0.596 92 | 0.624 76 | 0.605 99 |
3 | 0.580 36 | 0.667 30 | 0.625 77 | 0.612 82 | 0.560 10 |
4 | 0.597 56 | 0.616 82 | 0.609 43 | 0.658 91 | 0.576 56 |
5 | 0.601 14 | 0.577 54 | 0.572 07 | 0.613 90 | 0.621 74 |
6 | 0.614 58 | 0.599 37 | 0.609 07 | 0.592 47 | 0.666 69 |
7 | 0.604 17 | 0.601 13 | 0.610 22 | 0.598 72 | 0.638 70 |
8 | 0.661 89 | 0.580 28 | 0.623 37 | 0.595 76 | 0.651 27 |
9 | 0.650 88 | 0.639 17 | 0.651 12 | 0.570 91 | 0.613 67 |
10 | 0.586 72 | 0.659 89 | 0.564 41 | 0.652 66 | 0.561 41 |
Table 7
PSNR of the proposed method for simulated data in different pixels missing"
缺失率/% | PSNR | ||
二维 | 三维 | 四维 | |
10 | 31.32 | 37.47 | 38.89 |
20 | 27.11 | 34.62 | 37.74 |
30 | 25.18 | 32.92 | 35.78 |
40 | 24.83 | 31.25 | 33.91 |
50 | 24.23 | 29.94 | 32.24 |
60 | 23.64 | 28.59 | 30.75 |
70 | 22.15 | 27.27 | 29.36 |
80 | 22.03 | 25.35 | 27.98 |
90 | 21.16 | 22.29 | 26.41 |
Table 8
RSE of the proposed method for simulated data in different pixels missing"
缺失率/% | RSE | ||
二维 | 三维 | 四维 | |
10 | 0.046 7 | 0.015 2 | 0.010 9 |
20 | 0.065 8 | 0.020 4 | 0.017 3 |
30 | 0.082 4 | 0.026 2 | 0.020 9 |
40 | 0.090 2 | 0.032 2 | 0.026 4 |
50 | 0.093 7 | 0.037 7 | 0.032 1 |
60 | 0.106 2 | 0.043 7 | 0.038 2 |
70 | 0.118 7 | 0.051 5 | 0.044 8 |
80 | 0.123 6 | 0.064 1 | 0.052 5 |
90 | 0.134 6 | 0.091 3 | 0.062 9 |
Table 9
Two-dimensional ground truth matrix of real data"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.866 67 | 0.993 28 | 0 |
2 | 0.999 81 | 0.922 41 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.741 38 | 0.911 11 | 0.996 14 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.922 22 | 0.996 14 | 0.142 86 |
5 | 0.999 87 | 0.827 59 | 0.911 11 | 0.996 14 | 0.142 85 |
6 | 0.999 80 | 0.896 55 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.933 33 | 0.997 29 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.933 33 | 0.997 29 | 0.142 85 |
9 | 0.999 86 | 0.948 28 | 0.944 44 | 0.996 72 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.933 33 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.996 14 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.995 57 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.996 14 | 0.142 85 |
14 | 0.999 85 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.999 85 | 0.922 41 | 0.988 89 | 0.996 14 | 0.142 86 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.996 72 | 0.142 86 |
17 | 0.999 86 | 0.931 03 | 1 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.827 59 | 0.988 89 | 0.996 72 | 0.142 85 |
19 | 0.998 91 | 0.094 82 | 0.811 11 | 0.993 85 | 0.000 11 |
20 | 0.999 82 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
Table 10
Two-dimensional observed matrix with 30% pixels missing of real data"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0 | 0.993 28 | 0 |
2 | 0.999 81 | 0 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0 | 0.911 11 | 0 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0 | 0.996 14 | 0 |
5 | 0 | 0.827 59 | 0 | 0.996 14 | 0 |
6 | 0 | 0 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0 | 0 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0 | 0 | 0 |
9 | 0.999 86 | 0.948 28 | 0 | 0 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0 | 0.142 85 |
14 | 0 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0 | 0 | 0 | 0.996 14 | 0 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0 | 0.142 86 |
17 | 0 | 0.931 03 | 0 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0 | 0 | 0.996 72 | 0 |
19 | 0 | 0 | 0.811 11 | 0.993 85 | 0 |
20 | 0 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
Table 11
Recovery of the proposed method for two-dimensional real data with 30% pixels missing"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.719 40 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.807 70 | 0.911 11 | 0.871 60 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.874 50 | 0.996 14 | 0.776 40 |
5 | 0.912 00 | 0.827 59 | 0.858 80 | 0.996 14 | 0.731 00 |
6 | 0.890 10 | 0.901 10 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.928 20 | 0.858 80 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.854 30 | 0.893 40 | 0.765 70 |
9 | 0.999 86 | 0.948 28 | 0.877 90 | 0.866 60 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.832 00 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.858 10 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.893 20 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.866 20 | 0.142 85 |
14 | 0.878 80 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.844 10 | 0.859 70 | 0.825 40 | 0.996 14 | 0.823 20 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.889 50 | 0.142 86 |
17 | 0.880 70 | 0.931 03 | 0.853 10 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.784 90 | 0.836 10 | 0.996 72 | 0.748 70 |
19 | 0.869 20 | 0.704 20 | 0.811 11 | 0.993 85 | 0.719 20 |
20 | 0.869 50 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
Table 12
Recovery of the proposed method for three-dimensional real data with 30% pixels missing"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.824 90 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.779 60 | 0.911 11 | 0.871 60 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.884 70 | 0.996 14 | 0.899 60 |
5 | 0.941 10 | 0.827 59 | 0.869 30 | 0.996 14 | 0.822 90 |
6 | 0.923 70 | 0.837 90 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.938 40 | 0.858 80 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.955 70 | 0.893 40 | 0.771 90 |
9 | 0.999 86 | 0.948 28 | 0.885 70 | 0.866 60 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.849 20 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.858 10 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.893 20 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.866 20 | 0.142 85 |
14 | 0.914 40 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.902 50 | 0.882 60 | 0.955 60 | 0.996 14 | 0.663 90 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.889 50 | 0.142 86 |
17 | 0.818 30 | 0.931 03 | 0.831 10 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.839 40 | 0.847 40 | 0.996 72 | 0.414 10 |
19 | 0.827 90 | 0.779 20 | 0.811 11 | 0.993 85 | 0.522 70 |
20 | 0.968 80 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
Table 13
Recovery of the proposed method for four-dimensional real data with 30% pixels missing"
序号 | 参数 | ||||
RF | PW | AM | AOA | PRI | |
1 | 0.999 82 | 0.913 79 | 0.831 90 | 0.993 28 | 0 |
2 | 0.999 81 | 0.905 50 | 0.888 89 | 0.995 57 | 0.142 86 |
3 | 0.999 84 | 0.828 90 | 0.911 11 | 0.932 70 | 0.142 86 |
4 | 0.999 86 | 0.775 86 | 0.885 30 | 0.996 14 | 0.414 10 |
5 | 0.939 70 | 0.827 59 | 0.879 30 | 0.996 14 | 0.446 70 |
6 | 0.889 70 | 0.912 80 | 0.922 22 | 0.997 29 | 0.142 85 |
7 | 0.999 83 | 0.913 79 | 0.885 70 | 0.905 50 | 0.142 86 |
8 | 0.999 85 | 0.948 28 | 0.942 80 | 0.931 40 | 0.155 90 |
9 | 0.999 86 | 0.948 28 | 0.937 40 | 0.932 70 | 0.142 86 |
10 | 0.999 87 | 0.818 97 | 0.932 20 | 0.996 72 | 0.142 85 |
11 | 0.999 87 | 0.827 59 | 0.966 67 | 0.967 90 | 0.142 86 |
12 | 0.999 87 | 0.818 97 | 0.966 67 | 0.966 40 | 0.142 86 |
13 | 0.999 81 | 0.887 93 | 0.977 78 | 0.988 30 | 0.142 85 |
14 | 0.899 30 | 0.913 79 | 0.977 78 | 0.996 14 | 0.142 85 |
15 | 0.899 10 | 0.904 40 | 0.954 70 | 0.996 14 | 0.298 30 |
16 | 0.999 86 | 0.931 03 | 0.988 89 | 0.991 00 | 0.142 86 |
17 | 0.871 20 | 0.931 03 | 0.944 60 | 0.996 14 | 0.142 86 |
18 | 0.999 87 | 0.855 90 | 0.820 30 | 0.996 72 | 0.473 10 |
19 | 0.903 30 | 0.872 60 | 0.811 11 | 0.993 85 | 0.442 60 |
20 | 0.882 40 | 0.818 97 | 1 | 0.995 57 | 0.142 74 |
Table 15
RSE of the propose method for real data with different pixels missing"
缺失率/% | RSE | ||
二维 | 三维 | 四维 | |
10 | 0.0237 | 0.0363 | 0.0511 |
20 | 0.040 1 | 0.051 6 | 0.080 1 |
30 | 0.059 4 | 0.073 7 | 0.106 6 |
40 | 0.084 3 | 0.075 2 | 0.132 5 |
50 | 0.122 4 | 0.091 4 | 0.158 7 |
60 | 0.177 2 | 0.112 6 | 0.184 7 |
70 | 0.245 2 | 0.131 2 | 0.212 0 |
80 | - | 0.170 1 | 0.242 6 |
90 | - | - | 0.284 3 |
1 | 何友, 朱扬勇, 赵鹏, 等. 国防大数据概述[J]. 系统工程与电子技术, 2016, 38 (6): 1300- 1305. |
HE Y , ZHU Y Y , ZHAO P , et al. Panorama of national defense big data[J]. Systems Engineering and Electronics, 2016, 38 (6): 1300- 1305. | |
2 | LI A , ZANG Q , SUN D , et al. A text feature-based approach for literature mining of IncRNA-protein interactions[J]. Neurocomputing, 2016, (7): 1417- 1421. |
3 | ARLOTTA L, CRESCENZ V, MECCA G, et al. Automatic annotation of data extracted from large web sites[C]//Proc. of the 6th International Workshop on Web and Databases, 2003: 7-12. |
4 | 李明, 李秀兰. 基于结果模式的Deep Web数据标注方法[J]. 计算机应用, 2011, 31 (7): 1733- 1736. |
LI M , LI X L . Deep web data annotation method based on result schema[J]. Journal of Computer Application, 2011, 31 (7): 1733- 1736. | |
5 | CHEN Y D, XU H, CARAMANIS C, et al. Robust matrix completion and corrupted columns[C]//Proc. of the 28th International Conference on Machine Learning, 2011: 873-880. |
6 | NEGAHBAN S , WAIN M J . Restricted strong convexity and weighted matrix completion: optimal bounds with noise[J]. Journal of Machine Learning Research, 2012, 5 (13): 1665- 1697. |
7 |
DAI W , KERM E , MILENK O . A geometric approach to low-rank matrix completion[J]. IEEE Trans. on Information Theory, 2012, 58 (1): 237- 247.
doi: 10.1109/TIT.2011.2171521 |
8 | 白宏阳, 马军勇, 熊凯, 等. 图像修复中的加权矩阵补全模型设计[J]. 系统工程与电子技术, 2016, 38 (7): 1703- 1708. |
BAI H Y , MA J Y , XIONG K , et al. Design of weighted matrix completion model in image inpainting[J]. Systems Engineering and Electronics, 2016, 38 (7): 1703- 1708. | |
9 |
ZHUANG L S , ZHOU Z H , GAO S H , et al. Label information guided graph construction for semi-supervised learning[J]. IEEE Trans. on Image Processing, 2017, 26 (9): 4182- 4192.
doi: 10.1109/TIP.2017.2703120 |
10 |
LI B Z , ZHAO X L , ZHANG X J , et al. A learnable group-tube transform induced tensor nuclear norm and its application for tensor completion[J]. SIAM Journal on Imaging Sciences, 2023, 16 (3): 1370- 1397.
doi: 10.1137/22M1531907 |
11 | TANG X L, ZHAO X L, LIU J, et al. Uncertainty-aware unsupervised image deblurring with deep residual prior[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2023. |
12 | WANG J L, HUANG T Z, ZHAO X L, et al. CoNoT: coupled nonlinear transform based low-rank tensor representation for multi-dimensional visual data completion[EB/OL]. [2023-03-28]. DOI: 10.1109/tnnls.2022.3217198. |
13 | LI B Z , ZHAO X L , JI T Y , et al. Nonlinear transform based tensor nuclear norm for low-rank tensor completion[J]. Journal of Scientific Computing, 2023, 92, 83. |
14 |
LUO Y S , ZHAO X L , JIANG T X , et al. Self-supervised nonlinear transform-based tensor nuclear norm for multi-dimensional image recovery[J]. IEEE Trans. on Image Processing, 2022, 31, 3793- 3808.
doi: 10.1109/TIP.2022.3176220 |
15 | DING M , HUANG T Z , ZHAO X L , et al. Tensor completion via nonconvex tensor ring rank minimization with guaranteed convergence[J]. Signal Processing, 2022, 194, 194- 208. |
16 |
LI B Z , ZHAO X L , WANG J L , et al. Tensor completion via collaborative sparse and low-rank transforms[J]. IEEE Trans. on Computational Imaging, 2021, 7, 1289- 1303.
doi: 10.1109/TCI.2021.3126232 |
17 | ZHEN Y B, HUANG T Z, ZHAO X L, et al. Fully-connected tensor network decomposition and its application to higher-order tensor completion[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2021: 11071-11078. |
18 |
WEN H X , ZHAO X L , JIANG T X , et al. Deep plug-and-play prior for low-rank tensor completion[J]. Neurocomputing, 2020, 400, 137- 149.
doi: 10.1016/j.neucom.2020.03.018 |
19 | 赵洪山, 寿佩瑶, 马利波. 低压台区缺失数据的张量补全方法[J]. 中国电机工程学报, 2020, 40 (22): 7328- 7337. |
ZHAO H S , SHOU P Y , MA L B . A Tensor completion method of missing data in transformer district[J]. Proceedings of the CSEE, 2020, 40 (22): 7328- 7337. | |
20 |
LI X P , CHEUNG S H . Robust low-rank tensor completion based on tensor ring rank via ellnorm[J]. IEEE Trans. on Signal Processing, 2021, 69, 3685- 3698.
doi: 10.1109/TSP.2021.3085116 |
21 |
ZHOU P L , LIN C Y , ZHOU C , et al. Tensor factorization for low-rank tensor completion[J]. IEEE Trans. on Image Processing, 2018, 27 (3): 1152- 1163.
doi: 10.1109/TIP.2017.2762595 |
22 |
B AI , Y Q . Nonconvex tensor relative total variation for image completion[J]. Mathematics, 2023, 11 (7): 1682- 1699.
doi: 10.3390/math11071682 |
23 | KESHAVAN A H , MONTANARI A , OH S . Matrix completion from noisy entries[J]. Journal of Machine Learning Research, 2010, 11 (3): 2057- 2078. |
24 | RECHT B . Simpler approach to matrix completion[J]. Journal of Machine Learning Research, 2011, 12 (7): 3413- 3430. |
25 |
CANDES E J , PLAN Y . Matrix completion with noise[J]. Proc.of the IEEE, 2010, 98 (6): 925- 936.
doi: 10.1109/JPROC.2009.2035722 |
26 | 王彩云, 赵焕玥, 王佳宁, 等. 快速加权核范数最小化的SAR图像去噪算法[J]. 系统工程与电子技术, 2019, 41 (7): 1504- 1508. |
WANG C Y , ZHAO H Y , WANG J N , et al. SAR image denoising via fast weighted nuclear norm minimization[J]. Systems Engineering and Electronics, 2019, 41 (7): 1504- 1508. | |
27 |
HESTENES M . Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4, 303- 320.
doi: 10.1007/BF00927673 |
28 |
JI T Y , HUANG T Z , ZHAO X L , et al. Tensor completion using total variation and low-rank matrix factorization[J]. Information Sciences, 2016, 326, 243- 257.
doi: 10.1016/j.ins.2015.07.049 |
29 | TOH K C , YUN S . An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6 (3): 615- 640. |
30 | ZHANG W , YANG J , LI Q , et al. Cooperative electromagnetic data annotation via low-rank matrix completion[J]. Remote Sensing, 2023, 15 (1): 121- 130. |
[1] | Xirui XUE, Shucai HUANG, Daozhi WEI, Jianfeng WU. Destination prediction of UAV cluster trajectory based on EMD-DESN [J]. Systems Engineering and Electronics, 2024, 46(1): 290-299. |
[2] | Huizhi ZHANG, Tianqi ZHANG, Rong FANG, Qingyu LUO. Blind estimation of pseudo-code sequence of soft spread spectrum signal based on SVD-K-means algorithm [J]. Systems Engineering and Electronics, 2024, 46(1): 326-333. |
[3] | Bilei ZHOU, Rongfeng LI, Hui CHEN, Hao CHEN, Lingyan DAI, Weijian LIU, Binbin LI. A sample-recognition-based radar sum-difference angle measurement method in time-domain discrete mainlobe jamming [J]. Systems Engineering and Electronics, 2023, 45(12): 3764-3771. |
[4] | Chen TANG, Ximei TU, Xiaogang LU, Qi ZHANG, Xiaobei ZHANG. Improved AES image encryption algorithm based on four-dimensional chaotic system [J]. Systems Engineering and Electronics, 2023, 45(12): 4040-4051. |
[5] | Renfei CHEN, Yong PENG, Zhongwen LI. A novel detector for floating objects based on continual unsupervised domain adaptation strategy [J]. Systems Engineering and Electronics, 2023, 45(11): 3391-3401. |
[6] | Ce JI, Bohan SONG, Rong GENG, Minjun LIANG. Deep learning based channel estimation for OFDM systems in fast time-varying channel [J]. Systems Engineering and Electronics, 2023, 45(11): 3649-3655. |
[7] | Yao WANG, Cong WANG, Xiang WANG, Zhitao HUANG. Non-punctured polar code parameter recognition algorithm based on soft decision [J]. Systems Engineering and Electronics, 2023, 45(10): 3293-3301. |
[8] | Yi MAO, Yongsheng DUAN, Zhongrui HUANG, Junning ZHANG. Direct position determination algorithm based on maximum complex correntropy target in impulsive noise environment [J]. Systems Engineering and Electronics, 2023, 45(9): 2651-2658. |
[9] | Yili HU, Yongbo ZHAO, Sheng CHEN, Mei ZHANG, Ben NIU. Angle estimation method for cylindrical polarization sensitive array by reduced-dimension interpolation [J]. Systems Engineering and Electronics, 2023, 45(9): 2659-2666. |
[10] | Zhiguo SUN, Jie WANG, Rongchen SUN, Yongzhen BAI, Qiheng LI. DOA estimation method of broadband coherent signals based on circular characteristic of noise [J]. Systems Engineering and Electronics, 2023, 45(9): 2667-2672. |
[11] | Jie DENG, Jiexin YIN, Bin YANG. Direct position determination method of fourth-order cumulant for noncircular signals [J]. Systems Engineering and Electronics, 2023, 45(9): 2690-2697. |
[12] | Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Construction method of rolling bearing health indicator based on enhanced restricted Boltzmann machine [J]. Systems Engineering and Electronics, 2023, 45(9): 2979-2985. |
[13] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
[14] | Mengyu NI, Hui CHEN, Xiaoge WANG, Binbin LI, Zhaojian ZHANG. Analysis of baseline length and clutter characteristic of co-orbital transceiver spaceborne radar [J]. Systems Engineering and Electronics, 2023, 45(8): 2498-2505. |
[15] | Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection [J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||