Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3265-3270.doi: 10.12305/j.issn.1001-506X.2024.10.03
• Electronic Technology • Previous Articles
Ran JI1,2, Maosen XIAO1,*, Shuo LI1,2, Yu LIU1,3, Zhanyi LUO1,3, Jiawei CHENG1,3
Received:
2023-08-18
Online:
2024-09-25
Published:
2024-10-22
Contact:
Maosen XIAO
CLC Number:
Ran JI, Maosen XIAO, Shuo LI, Yu LIU, Zhanyi LUO, Jiawei CHENG. Research on MRTD objective testing method based on machine learning[J]. Systems Engineering and Electronics, 2024, 46(10): 3265-3270.
1 | 吕昕梦, 周俊. 红外成像系统MRTD测试方法研究[J]. 光电技术应用, 2021, 36 (6): 77- 80. |
LYU X M , ZHOU J . Research on MRTD testing method of infrared imaging system[J]. Electro-Optic Technology, 2021, 36 (6): 77- 80. | |
2 |
范心田, 卢振武, 孙强. 红外成像系统中MRTD测试方法的研究[J]. 红外与激光工程, 2004, 33 (5): 445- 448.
doi: 10.3969/j.issn.1007-2276.2004.05.002 |
FAN X T , LU Z W , SUN Q . Measurement method for MRTD of infrared imaging system[J]. Infrared and Laser Engineering, 2004, 33 (5): 445- 448.
doi: 10.3969/j.issn.1007-2276.2004.05.002 |
|
3 | BURROUGHS E, MOE G O, LESHER G W, et al. Automated MRTD using boundary contour system, custom feature extractors and fuzzy ARTMAP[C]//Proc. of the Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, 1995, 2470: 274-287. |
4 | 孙军月. 应用神经网络智能测量热成像系统MRTD[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2006. |
SUN J Y. Intelligent MRTD testing for thermallmaging system using ANN[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2006. | |
5 | SUN J Y, MA D. Intelligent MRTD testing for thermal imaging system using ANN[C]//Proc. of the ICO20: Remote Sensing and Infrared Devices and Systems, 2006, 6031: 260-266. |
6 | 王连振, 吴晗平, 李旭辉, 等. 红外成像系统综合性能评价方法研究[J]. 红外技术, 2015, 37 (1): 57- 62. |
WANG L Z , WU H P , LI X H , et al. Research on the methods of IR imaging system comprehensive performance evaluation[J]. Infrared Technology, 2015, 37 (1): 57- 62. | |
7 |
LIU F Y , LIU J , WANG L B . Deep learning and infrared thermography for asphalt pavement crack severity classification[J]. Automation in Construction, 2022, 140, 104383.
doi: 10.1016/j.autcon.2022.104383 |
8 |
HANG R L , LI Z , LIU Q S , et al. Hyperspectral image classification with attention-aided CNNs[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (3): 2281- 2293.
doi: 10.1109/TGRS.2020.3007921 |
9 | AHMAD M , SHABBIR S , RAZA R A , et al. Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for hyperspectral image classification[J]. Optik-International Journal for Light and Electron Optics, 2021, 246 (1): 167757. |
10 | ARNOUS F I , NARAYANAN R M , LI B C . Application of multidomain sensor image fusion and training data augmentation for enhanced CNN image classification[J]. Journal of Electronic Imaging, 2022, 31 (1): 013014. |
11 |
LIU F C , XU H , QI M , et al. Depth-wise separable convolution attention module for garbage image classification[J]. Sustainability, 2022, 14 (5): 3099.
doi: 10.3390/su14053099 |
12 |
MELGANI F , BRUZZONE L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42 (8): 1778- 1790.
doi: 10.1109/TGRS.2004.831865 |
13 | KHAIRANDISH M O , SHARMA M , JAIN V , et al. A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images[J]. Innovation and Research in Biomedical Engineering, 2022, 43 (4): 290- 299. |
14 | REDDY A S . Extensive content feature based image classification and retrieval using SVM[J]. CVR Journal of Science and Technology, 2023, 24 (1): 53- 58. |
15 | KEERTHANA D , VENUGOPAL V , NATH M K , et al. Hybrid convolutional neural networks with SVM classifier for classification of skin cancer[J]. Biomedical Engineering Advances, 2023, 5, 100069. |
16 | ARI A . Multipath feature fusion for hyperspectral image classification based on hybrid 3D/2D CNN and squeeze-excitation network[J]. Earth Science Informatics, 2023, 16 (1): 175- 191. |
17 | CHEN G M , CHEN Q , LONG S , et al. Quantum convolutional neural network for image classification[J]. Pattern Analysis and Applications, 2023, 26 (2): 655- 667. |
18 | LI B H , HOU Y T , CHE W X . Data augmentation approaches in natural language processing: a survey[J]. AI Open, 2021, 3, 71- 90. |
19 | POLSON N G , SCOTT S L . Data augmentation for support vector machines[J]. Bayesian Analysis, 2011, 6 (1): 1- 23. |
20 | 田留德, 刘朝晖, 赵建科, 等. 红外热像仪MRTD测试方法研究[J]. 红外技术, 2015, 37 (5): 368- 373. |
TIAN L D , LIU C H , ZHAO J K , et al. Measurement method for MRTD of infrared imaging system[J]. Infrared Technology, 2015, 37 (5): 368- 373. | |
21 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893. |
22 | GALAR M , FERNANDEZ A , BARRENECHEA E , et al. DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems[J]. Pattern Recognition, 2015, 48 (1): 28- 42. |
23 | KINGMA D P , BA J . Adam: a method for stochastic optimization[J]. Computer Science, 2014, 14126980. |
24 | SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
25 | SALEHIN I , KANG D K . A review on Dropout regularization approaches for deep neural networks within the scholarly domain[J]. Electronics, 2023, 12 (14): 3106. |
26 | HU J, SHEN L, SAMUEL A. Squeeze-and-excitation networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
27 | SARIGUL M . Performance analysis of CNN channel attention modules for image classification task[J]. Çukurova Universitesi Mühendislik Fakültesi Dergisi, 2023, 38 (1): 35- 40. |
28 | HSIAO T Y , CHANG Y C , CHOU H H , et al. Filter-based deep-compression with global average pooling for convolutional networks[J]. Journal of Systems Architecture, 2019, 95, 9- 18. |
29 | KHAN A , SOHAIL A , ZAHOORA U , et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53, 5455- 5516. |
30 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
[1] | Wei WU, Bing XUE, Dandan LIU. Target and sea clutter identification algorithm based on Tri-feature training [J]. Systems Engineering and Electronics, 2024, 46(9): 2935-2940. |
[2] | Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN. Research on few shot target detection method based on decoupling [J]. Systems Engineering and Electronics, 2024, 46(9): 2941-2950. |
[3] | Xiaoxuan CHEN, Shuwen XU, Shaohai HU, Xiaole MA. Infrared and visible light image fusion based on convolution and self attention [J]. Systems Engineering and Electronics, 2024, 46(8): 2641-2649. |
[4] | Qianglong WANG, Xiaoguang GAO, Bicong WU, Zijian HU, Kaifang WAN. Review of research on restricted Boltzmann machine and its variants [J]. Systems Engineering and Electronics, 2024, 46(7): 2323-2345. |
[5] | Xiantao SUN, Wangyang JIANG, Wenjie CHEN, Weihai CHEN, Yali ZHI. Object grasp pose detection based on the region of interest [J]. Systems Engineering and Electronics, 2024, 46(6): 1867-1877. |
[6] | Quanquan WANG, Zhihao GU, Chengkun WU, Ting WAN. Cooperative spectrum sensing method based on HHO-SVM for resisting SSDF attacks [J]. Systems Engineering and Electronics, 2024, 46(6): 2146-2154. |
[7] | Yida WU, Caiyun WANG, Jianing WANG, Xiaofei LI. Infrared multi-sensor fusion recognition method based on ISVM-DS [J]. Systems Engineering and Electronics, 2024, 46(5): 1555-1560. |
[8] | Xi WANG, Hui REN, Wei WANG, Jiayi ZHANG, Hongshan ZHAO. Channel connectivity reliability prediction in URLLC scenario [J]. Systems Engineering and Electronics, 2024, 46(5): 1810-1819. |
[9] | Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet [J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173. |
[10] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[11] | Degui YANG, Daofeng XU. Human behavior recognition method of IR-UWB through wall radar based on time-frequency domain feature fusion [J]. Systems Engineering and Electronics, 2024, 46(3): 849-858. |
[12] | Zhiqiang JIAO, Kan YI, Jieyong ZHANG, Peiyang YAO. C4ISR state monitoring method based on SVM incremental learning of imbalanced data [J]. Systems Engineering and Electronics, 2024, 46(3): 992-1003. |
[13] | Lei YU, Qiuyue DENG, Liying ZHENG, Haoyu WU. Second-order progressive feature fusion network for image super-resolution reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 391-400. |
[14] | Duanyang SHI, Qiang LIN, Bing HU, Xiaoshuai DU. Target detection method of primary surveillance radar based on YOLO [J]. Systems Engineering and Electronics, 2024, 46(1): 143-151. |
[15] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||