Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2634-2642.doi: 10.12305/j.issn.1001-506X.2023.08.39
• Reliability • Previous Articles Next Articles
Qihang YANG1, Zhiwei YI1, Ning HUANG1,2,*
Received:
2022-07-01
Online:
2023-07-25
Published:
2023-08-03
Contact:
Ning HUANG
CLC Number:
Qihang YANG, Zhiwei YI, Ning HUANG. DSPN-based application availability analysis for 5G industrial control systems[J]. Systems Engineering and Electronics, 2023, 45(8): 2634-2642.
1 | THOMESSE J P. Fieldbus technology and industrial automation[C]// Proc. of the IEEE Conference on Emerging Technologies & Factory Automation, 2005. |
2 |
HOLFELD B , WIERUCH D , WIRTH T , et al. Wireless communication for factory automation: an opportunity for LTE and 5G systems[J]. IEEE Communications Magazine, 2016, 54 (6): 36- 43.
doi: 10.1109/MCOM.2016.7497764 |
3 | LI Z, UUSITALO M A, SHARIATMADARI H, et al. 5G URLLC: design challenges and system concepts[C]//Proc. of the IEEE 5th International Symposium on Wireless Communication Systems, 2018. |
4 |
MENDIS H V K , LI F Y . Achieving ultra reliable communication in 5G networks: a dependability perspective availability analysis in the space domain[J]. IEEE Communications Letters, 2017, 21 (9): 2057- 2060.
doi: 10.1109/LCOMM.2017.2696958 |
5 | BENCHAABENE Y, BOUJNAH N, ZARAI F. Ultra reliable communication: availability analysis in 5G cellular networks[C]// Proc. of the IEEE 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, 2019: 96-102. |
6 | HLER T, SCHULZ P, SIMSEK M, et al. Mission availability for wireless URLLC[C]//Proc. of the IEEE Global Communications Conference, 2019. |
7 | HOSLER T, SCHEUVENS L, FRANCHI N, et al. Applying reliability theory for future wireless communication networks[C]// Proc. of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, 2017. |
8 | KOZAT U C, SOONG A. On the impact of slicing granularity on the availability and scalability of 5G networks[C]//Proc. of the IEEE International Conference on Communications, 2019. |
9 | ATAIE E , ENTEZARI-MALEKI R , RASHIDI L , et al. Hie-rarchical stochastic models for performance, availability, and power consumption analysis of IaaS clouds[J]. IEEE Trans.on Cloud Computing, 2017, 7 (4): 1039- 1056. |
10 |
SANTOS G L , TAKAKO E P , FERREIRA D S , et al. Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures[J]. Journal of Cloud Computing, 2018, 7 (1): 1- 22.
doi: 10.1186/s13677-017-0102-3 |
11 |
NGUYEN T A , MIN D , CHOI E , et al. Dependability and security quantification of an internet of medical things infrastructure based on cloud-fog-edge continuum for healthcare moni-toring using hierarchical models[J]. IEEE Internet of Things Journal, 2021, 8 (21): 15704- 15748.
doi: 10.1109/JIOT.2021.3081420 |
12 | CHETTRI L , BERA R . A comprehensive survey on internet of things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal, 2019, 7 (1): 16- 32. |
13 | MARSAN M A , BALBO G , CONTE G , et al. Modelling with generalized stochastic Petri nets[J]. ACM Sigmetrics Perfor-mance Evaluation Review, 1998, 26 (2): 301- 302. |
14 |
MURATA T . Petri nets: properties, analysis and applications[J]. Proceedings of the IEEE, 1989, 77 (4): 541- 580.
doi: 10.1109/5.24143 |
15 | 林闯, 王元卓, 杨扬, 等. 基于随机Petri网的网络可信赖性分析方法研究[J]. 电子学报, 2006, 34 (2): 322- 332. |
LIN C , WANG Y Z , YANG Y , et al. Research on network dependability analysis methods based on stochastic Petri net[J]. Acta Electronica Sinica, 2006, 34 (2): 322- 332. | |
16 | CIARDO G, LINDEMANN C. Analysis of deterministic and stochastic Petri nets[C]//Proc. of the IEEE 5th International Workshop on Petri Nets and Performance Models, 2002. |
17 | 黄宁. 网络可靠性及评估技术[M]. 北京: 国防工业出版社, 2020. |
HUANG N . Network reliability and its evaluation technology[M]. Beijing: National Defense Industry Press, 2020. | |
18 |
GILBERT E N . Capacity of a burst-noise channel[J]. The Bell System technical Journal, 1960, 39 (5): 1253- 1265.
doi: 10.1002/j.1538-7305.1960.tb03959.x |
19 | ÖHMANN D, FETTWEIS G P. Minimum duration outage of wireless Rayleigh-fading links using selection combining[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2015. |
20 |
NAKAZATO J , NAKAMURA M , YU T , et al. Market ana-lysis of MEC-assisted beyond 5G ecosystem[J]. IEEE Access, 2021, 9, 53996- 54008.
doi: 10.1109/ACCESS.2021.3068839 |
21 |
BAGCHI S , SIDDIQUI M B , WOOD P , et al. Dependability in edge computing[J]. Communications of the ACM, 2019, 63 (1): 58- 66.
doi: 10.1145/3362068 |
22 | SANTOS G L , TAKAKO E P , FERREIRA D S , et al. Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures[J]. Journal of Cloud Computing, 2018, 7 (1): 118- 120. |
23 |
RODRIGUES L , GONÇALVES I , FÉ I , et al. Performance and availability evaluation of an smart hospital architecture[J]. Computing, 2021, 103 (10): 2401- 2435.
doi: 10.1007/s00607-021-00979-x |
24 |
ZERIHUN T A , GARAU M , HELVIK B E . Effect of communication failures on state estimation of 5G-enabled smart grid[J]. IEEE Access, 2020, 8, 112642- 112658.
doi: 10.1109/ACCESS.2020.3002981 |
25 | SANTOS G L, ENDO P T, GONÇALVES G, et al. Analyzing the IT subsystem failure impact on availability of cloud services[C]// Proc. of the IEEE Symposium on Computers and Communications, 2017: 717-723. |
26 |
ROCHA E , SANTOS G L , ENDO P T . Analyzing the impact of power subsystem failures and checkpoint mechanisms on availability of cloud applications[J]. IEEE Latin America Transactions, 2020, 18 (1): 138- 146.
doi: 10.1109/TLA.2020.9049471 |
27 | HEISING C. IEEE recommended practice for the design of reliable industrial and commercial power systems[S]. New York: IEEE, 2007. |
28 | SIMON D F , TEIXEIRA M , COSTA J . Availability estimation in photovoltaic generation systems using timed Petri Net simulation models[J]. International Journal of Electrical Power & Energy Systems, 2022, 137, 106897. |
29 | ZIMMERMANN A. Modeling and evaluation of stochastic Petri nets with TimeNET 4.1[C]//Proc. of the 6th International ICST Conference on Performance Evaluation Methodologies and Tools, 2012: 54-63. |
30 |
CAMPOLONGO F , TARANTOLA S , SALTELLI A . Tackling quantitatively large dimensionality problems[J]. Computer Physics Communications, 1999, 117 (1-2): 75- 85.
doi: 10.1016/S0010-4655(98)00165-9 |
[1] | Xiaofei MIN, Jing LI, Zhaohui ZHANG. Traffic load balancing routing optimization algorithms in SDN-driven networks [J]. Systems Engineering and Electronics, 2023, 45(8): 2578-2587. |
[2] | Linghui LI, Wei LI, Jin JIN, Linling KUANG. Equivalent modeling method for interference analysis of 5G system to large-scale NGSO satellite system [J]. Systems Engineering and Electronics, 2022, 44(8): 2635-2644. |
[3] | Jie ZHU, Ning HUANG, Liang CHENG. Multi-parameter sensitivity analysis of network function virtualization application availability [J]. Systems Engineering and Electronics, 2022, 44(8): 2677-2687. |
[4] | Kun CHEN, Ning HUANG, Xiangwei WU, Jingmeng ZHAO. A 5G application fault analysis method considering suppress coupling relationship [J]. Systems Engineering and Electronics, 2022, 44(6): 2043-2050. |
[5] | Yingxin ZHAO, Changfeng WANG, Hong WU, Ming ZHANG, Yingjie HUANG, Legeng WANG, Zhiyang LIU. Channel estimation algorithm based on compressed sensing with maximizing negative entropy [J]. Systems Engineering and Electronics, 2021, 43(4): 1126-1132. |
[6] | Dangfei PAN, Wenxue LIU, Hong YUAN, Jian GE. High-precision time synchronization networking algorithm for 5G base station based on GNSS [J]. Systems Engineering and Electronics, 2020, 42(9): 2107-2115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||