Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2325-2331.doi: 10.12305/j.issn.1001-506X.2023.08.05
• Special Section on "Enterprise Strategic Management and System-of-Systems General Design—Celebrating the 70th Anniversary of National University of Defense Technology" • Previous Articles Next Articles
Hongjun ZHANG1, Baiqiao HUANG2,*, Tian BAI2
Received:2023-05-23
Online:2023-07-25
Published:2023-08-03
Contact:
Baiqiao HUANG
CLC Number:
Hongjun ZHANG, Baiqiao HUANG, Tian BAI. Adaptive mechanism construction and evaluation method of complex engineering SoS[J]. Systems Engineering and Electronics, 2023, 45(8): 2325-2331.
Table 1
Hierarchy definition of system adaptability"
| 层次 | 等级 | 定义 |
| 干预性适应性 | AL-1 | 具有一定感知能力 |
| AL-2 | 具有实时故障诊断能力 | |
| AL-3 | 具有健康管理与一定的预警能力 | |
| AL-4 | 在组成、结构、功能与流程上具有可重构能力 | |
| 半自主适应性 | AL-5 | 具有面向任务的自主协调各个成员能力 |
| AL-6 | 面向任务与环境, 在人的干预下可自主实施作业重规划 | |
| AL-7 | 面向任务与环境, 在人的干预下工程系统可自主实施战略重规划 | |
| 全自主适应性 | AL-8 | 具有积累自身运行数据, 并分析现有运行策略瓶颈的能力 |
| AL-9 | 具有积累自身运行数据, 优化运行规则, 并执行的能力 | |
| AL-10 | 具有完整的自我感知、恢复、学习、进化的能力 |
| 1 | 殷瑞钰, 李伯聪, 汪应洛. 工程方法论[M]. 北京: 高等教育出版社, 2017. |
| YIN R Y , LI B C , WANG Y L . Engineering Methodology[M]. Beijing: Higher Education Press, 2017. | |
| 2 | Office of the Deputy under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering[R]. Systems Engineering Guide for Systems of Systems, V1. Washington DC: Department of Defense, 2008. |
| 3 |
MAIER M W . Architecting principles for system-of-system[J]. Systems Engineering, 1998, 1 (4): 267- 284.
doi: 10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D |
| 4 | MAIER M W. Research challenges for system-of-systems[C]//Proc. of the IEEE International Conference on Systems, 2006: 3149-3154. |
| 5 | The International Council in Systems Engineering . System engineering handbook—a guide for system life cycle processes and activities[M]. San Diego: John Wiley & Sons, 2015. |
| 6 | ZHANG H J, HUANG B Q, ZHANG P, et al. A new index for SoS reliability-viability[C]//Proc. of the 12th International Conference on Reliability, Maintainability, and Safety, 2018. |
| 7 | 潘星, 张振宇, 张曼丽, 等. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1771- 1779. |
| PAN X , ZHANG Z Y , ZHANG M L , et al. Research on RMS demonstration method of equipment SoS based on SoSE[J]. Systems Engineering and Electronics, 2019, 41 (8): 1771- 1779. | |
| 8 | 李小波, 林木, 束哲, 等. 体系贡献率能效综合评估方法[J]. 系统仿真学报, 2018, 30 (12): 4520-4528, 4535 |
| LI X B , LIN M , SHU Z , et al. Synthesized capability-effectiveness evaluation method of contribution ratio to system-of-systems[J]. Journal of System Simulation, 2018, 30 (12): 4520-4528, 4535 | |
| 9 |
HOLLING C S . Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4, 1- 23.
doi: 10.1146/annurev.es.04.110173.000245 |
| 10 | SCOTT L. Engineered resilient systems DoD science and technology priority[R]. Washington DC: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012. |
| 11 | HOLLAND J P. Engineered resilient systems (ERS) overview[R]. Mississippi: U.S. Army Engineer Research and Development Center, 2013. |
| 12 | 潘星, 张国忠, 张跃东, 等. 工程弹性系统与系统弹性理论研究综述[J]. 系统工程与电子技术, 2019, 41 (9): 2006- 2015. |
| PAN X , ZHANG G Z , ZHANG Y D , et al. Review of engineered resilient systems and system resilience theory[J]. Systems Engineering and Electronics, 2019, 41 (9): 2006- 2015. | |
| 13 |
李震, 崔骁松, 孙晨旭, 等. 基于时间和任务重要度的系统弹性恢复研究[J]. 计算机与数字工程, 2021, 49 (11): 2213- 2217.
doi: 10.3969/j.issn.1672-9722.2021.11.009 |
|
LI Z , CUI X S , SUN C X , et al. Research on system resilience recovery based on time and task importance[J]. Computer & Digital Engineering, 2021, 49 (11): 2213- 2217.
doi: 10.3969/j.issn.1672-9722.2021.11.009 |
|
| 14 |
CASABLANCA R M , CRIADO R , MESA J A , et al. A comprehensive approach for discrete resilience of complex networks[J]. Chaos, 2023, 33 (1): 013111.
doi: 10.1063/5.0124687 |
| 15 | SAMPAIO F C G , FILHO R N C , GUTERRES M X . Modeling resilience of air traffic management systems based on complex networks[J]. Journal of Aerospace Technology and Mana-gement, 2022, 14 (1) |
| 16 | 齐小刚, 张碧雯, 刘立芳, 等. 复杂信息网络的弹性评估和优化方法研究[J]. 计算机科学与探索, 2018, 12 (8): 1252- 1262. |
| QI X G , ZHANG B W , LIU L F , et al. Evaluation and optimi zation of complex network resilience against attacks[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12 (8): 1252- 1262. | |
| 17 |
杨琦, 张雅妮, 周雨晴, 等. 复杂网络理论及其在公共交通韧性领域的应用综述[J]. 中国公路学报, 2022, 35 (4): 215- 229.
doi: 10.3969/j.issn.1001-7372.2022.04.018 |
|
YANG Q , ZHANG Y N , ZHOU Y Q , et al. A review of complex network theory and its application in the resilience of public transportation systems[J]. China Journal of Highway and Transport, 2022, 35 (4): 215- 229.
doi: 10.3969/j.issn.1001-7372.2022.04.018 |
|
| 18 | BEER S . The viable system model: its provenance, development, methodology and pathology[J]. Journal of the Operational Research Society, 1984, 35 (1): 7- 25. |
| 19 | HOLLAND J H . Hidden order[M]. Boston: Addison-Wesley Press, 1995. |
| 20 | 郭雷, 程代展, 冯德兴. 控制理论导论-从基本概念到研究前沿[M]. 北京: 中国科学出版社, 2005. |
| GUO L , CHENG D Z , FENG D X . Introduction to control theory-from basic concepts to research frontiers[M]. Beijing: China Science Press, 2005. | |
| 21 | 柴天佑, 岳恒. 自适应控制[M]. 北京: 清华大学出版社, 2016. |
| CHAI T Y , YUE H . Adaptive control[M]. Beijing: Tsinghua University Press, 2016. | |
| 22 | LEE J, KAO H A. Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics[C]// Proc. of the International Conference on Industrial Informa- tics, 2014. |
| 23 | LEE J , BAGHERI B , KAO H A . A cyber-physical systems architecture for industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3, 18- 23. |
| 24 | 王维平, 李小波, 杨松, 等. 智能化多无人集群作战体系动态适变机制设计方法[J]. 系统工程理论与实践, 2021, 41 (5): 1096- 1106. |
| WANG W P , LI X B , YANG S , et al. A design method of dynamic adaption mechanism for intelligent multi-unmanned-cluster combat system-of-systems[J]. System Engineering-Theory & Practice, 2021, 41 (5): 1096- 1106. | |
| 25 | BRYSON B . The body—a guide for occupants[M]. New York: World Digital Press, 2019. |
| 26 | TURING A M . Computing machinery and intelligence[J]. Mind, 1995, 59, 433- 460. |
| 27 | WIENER N . Human use of human beings-cybernetics and society[M]. Massachusetts: The Riverside Press, 1950. |
| 28 | SCHRODINGER E . What is life? The physical aspect of the living cell[M]. Cambridge: Cambridge University Press, 1944. |
| 29 | 张宏军, 黄百乔, 鞠鸿彬, 等. 体系生命力理论框架[J]. 科技导报, 2018, 36 (20): 20- 26. |
| ZHANG H J , HUANG B Q , JU H B , et al. Theoretical framework of SoS vitality[J]. Science & Technology Review, 2018, 36 (20): 20- 26. | |
| 30 | 张宏军, 黄百乔, 罗永亮, 等. 从降维解析到映射升维——复杂工程系统原理探索[M]. 北京: 电子工业出版社, 2020. |
| ZHANG H J , HUANG B Q , LUO Y L , et al. From dimension reduction analysis to mapping dimension increasing-exploration on the primciple of complex engineering system[M]. Beijing: Electronic Industry Press, 2020. | |
| 31 | 张宏军, 邱伯华, 魏慕恒, 等. 工程体系基于V++规则引擎的生态演进[M]. 北京: 电子工业出版社, 2021. |
| ZHANG H J , QIU B H , WEI M H , et al. The ecological evolution of engineering system of systems based on the V++ rule engine[M]. Beijing: Electronic Industry Press, 2021. | |
| 32 | 张宏军, 黄百乔. 基于规则的复杂工程系统设计方法[J]. 系统工程学报, 2023, 38 (2): 283- 288. |
| ZHANG H J , HUANG B Q . Rules-based complex engineering system design methods[J]. Journal of System Engineering, 2023, 38 (2): 283- 288. | |
| 33 | PENNEY H R, OLSEN M C, DEPTULA D A. Beyond pixie dust: a framework for understanding and developing autonomy in unmanned aircraft[R]. Arlington: The Mitchell Institute for Aerospace Studies, 2022. |
| [1] | Ying ZENG, Yanfeng LI, Hongyi WANG, Huaming QIAN, Hongzhong HUANG. Reliability analysis of industrial robot driver combining MRGP and PSO [J]. Systems Engineering and Electronics, 2023, 45(8): 2643-2650. |
| [2] | Yang ZHANG, Guangya SI, Yanzheng WANG, Wenbin HAN. Modeling and simulation of UAVs swarm electromagnetic operation [J]. Systems Engineering and Electronics, 2023, 45(7): 2121-2130. |
| [3] | Xiangyu LI, Hongzhong HUANG, Xiaoyan XIONG. Reliability modeling of phased mission system considering shocks and phase backups [J]. Systems Engineering and Electronics, 2023, 45(7): 2280-2286. |
| [4] | Yanqiu HE, Youyuan WANG, Liping HE. Bootstrap estimation method of confidence interval for long-life product reliability based on maximum information entropy [J]. Systems Engineering and Electronics, 2023, 45(6): 1880-1892. |
| [5] | Jiang LI, Hecheng WU, Chen ZHU. Reliability assessment of long-life products based on semi-parametric degradation model [J]. Systems Engineering and Electronics, 2023, 45(6): 1893-1901. |
| [6] | Weining MA, Qiwei HU, Wenbin CAO, Xisheng JIA. Equipment selective maintenance decision optimization considering maintenance task assignment [J]. Systems Engineering and Electronics, 2023, 45(6): 1902-1910. |
| [7] | Yi XIONG, Sifeng LIU, Zhigeng FANG, Shujun NAN, Jingru ZHANG, Ruirui SHAO. RMS model for availability evaluation of maritime satellite earth station [J]. Systems Engineering and Electronics, 2023, 45(5): 1570-1579. |
| [8] | Yun ZHONG, Lujun WAN, Peiyang YAO, Jieyong ZHANG. Measurement and optimization of generation and evolution of agile C2 organization [J]. Systems Engineering and Electronics, 2023, 45(4): 1090-1097. |
| [9] | Junliang LI, Huayuan ZHU, Zheng WANG, Liming WANG, Xinlei ZHANG. Reliability modeling of airborne products based on mixed Gamma distribution [J]. Systems Engineering and Electronics, 2023, 45(2): 614-620. |
| [10] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
| [11] | Tingchun HU, Yufeng SUN, Xiaoxiao LI, Guangyan ZHAO. Solution of reliability of cold standby voting system with arbitrary distribution [J]. Systems Engineering and Electronics, 2022, 44(7): 2357-2363. |
| [12] | Chengfei YUE, Zhenghua XUE, Weiran YAO, Xibin CAO. Cooperative combat task allocation of multiple aerial vehicles based on the characteristic relation [J]. Systems Engineering and Electronics, 2022, 44(6): 1897-1906. |
| [13] | Qiuping XU, Kai ZHAO, Detao QU, Gangdun LIU. LCSS-based fast matching method of target trajectory rule [J]. Systems Engineering and Electronics, 2022, 44(4): 1263-1269. |
| [14] | Yao TAN, Qian ZHAO, Wenfeng WANG, Bo GUO, Ping JIANG. Type I censored reliability acceptence test plan for Weibull distributed products by considering expert information [J]. Systems Engineering and Electronics, 2022, 44(4): 1409-1416. |
| [15] | Han YANG, Haowei WANG, Qingrong LI, Min CHEN, Bo PENG. Application research of creep life model based on belief reliability theory [J]. Systems Engineering and Electronics, 2022, 44(3): 1044-1051. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||