Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (7): 2138-2149.doi: 10.12305/j.issn.1001-506X.2023.07.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Jun YOU1, Ke ZHANG1, Zhiguo HAN1,*, Tianxing CAI2, Cheng ZHANG3
Received:
2022-06-08
Online:
2023-06-30
Published:
2023-07-11
Contact:
Zhiguo HAN
CLC Number:
Jun YOU, Ke ZHANG, Zhiguo HAN, Tianxing CAI, Cheng ZHANG. Three-dimensional super-twisting slide mode cooperative guidance law with line-of-sight angle constraint[J]. Systems Engineering and Electronics, 2023, 45(7): 2138-2149.
Table 1
Initial conditions of missiles and target"
序号 | x/m | y/m | z/m | v/(m/s) | θ/(°) | φ/(°) | qεd/(°) | qβd/(°) |
导弹1 | -3 000 | 20 000 | -5 000 | 680 | -10 | -10 | -15 | -10 |
导弹2 | 0 | 20 000 | 5 000 | 680 | -15 | 10 | -23 | 10 |
导弹3 | -2 000 | 20 000 | 1 000 | 680 | -5 | 5 | -18 | 0 |
导弹4 | -1 000 | 20 000 | -7 000 | 680 | -5 | -10 | -25 | -15 |
目标 | 20 000 | 8 000 | 0 | 200 | 0 | 0 | - | - |
Table 2
Guidance results for non-maneuvering target(simulation scenaro 2)"
编号 | 脱靶量/m | 制导时间/s | 高低角误差/(°) | 方位角误差/(°) |
导弹1(本文) | 0.086 9 | 46.423 0 | 0.061 9 | 0.009 9 |
导弹2(本文) | 0.533 8 | 46.422 0 | 0.026 9 | 0.014 9 |
导弹3(本文) | 0.558 3 | 46.422 0 | 0.021 7 | 0.010 7 |
导弹4(本文) | 0.246 2 | 46.422 0 | 0.042 2 | 0.013 6 |
导弹1([ | 0.020 0 | 48.303 0 | 0.163 5 | 0.032 2 |
导弹2([ | 0.409 5 | 48.302 0 | 0.035 5 | 0.055 7 |
导弹3([ | 0.574 2 | 48.302 0 | 0.034 8 | 0.036 3 |
导弹4([ | 0.554 8 | 48.302 0 | 0.032 7 | 0.049 0 |
Table 3
Guidance results for non-maneuvering target"
编号 | 脱靶量/m | 制导时间/s | 高低角误差/(°) | 方位角误差/(°) |
导弹1(本文) | 0.050 7 | 41.392 0 | 0.216 9 | 0.108 2 |
导弹2(本文) | 0.287 2 | 41.402 0 | 0.184 2 | 0.168 1 |
导弹3(本文) | 0.420 9 | 41.388 0 | 0.264 4 | 0.197 3 |
导弹4(本文) | 0.359 9 | 41.383 0 | 0.171 5 | 0.095 2 |
导弹1([ | 0.239 3 | 41.701 0 | 0.411 7 | 0.003 2 |
导弹2([ | 0.398 2 | 41.716 0 | 0.431 9 | 0.573 3 |
导弹3([ | 0.457 8 | 41.696 0 | 0.301 7 | 0.347 5 |
导弹4([ | 0.019 7 | 41.691 0 | 1.027 7 | 0.036 0 |
1 | 宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37 (12): 1306- 1314. |
SONG J H , SONG S M , XU S L . A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37 (12): 1306- 1314. | |
2 |
HE S M , LIN D F . Three-dimensional optimal impact time gui-dance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (4): 941- 948.
doi: 10.2514/1.G003971 |
3 |
HOU Z W , YANG Y , LIU L , et al. Terminal sliding mode control based impact time and angle constrained guidance[J]. Aerospace Science and Technology, 2019, 93, 105142.
doi: 10.1016/j.ast.2019.04.050 |
4 |
CHEN X T , WANG J Z . Nonsingular sliding-mode control for field-of-view constrained impact time guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1214- 1222.
doi: 10.2514/1.G003146 |
5 | KIM H G , CHO D , KIM H J . Sliding mode guidance law for impact time control without explicit time-to-go estimation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (1): 236- 250. |
6 |
TSALIK R , SHIMA T . Circular impact-time guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (8): 1836- 1847.
doi: 10.2514/1.G004074 |
7 |
TANG Y , ZHU X P , ZHOU Z , et al. Two-phase guidance law for impact time control under physical constraints[J]. Chinese Journal of Aeronautics, 2020, 33 (11): 2946- 2958.
doi: 10.1016/j.cja.2020.06.007 |
8 |
HU Q L , HAN T , XIN M . Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (1): 136- 148.
doi: 10.2514/1.G003620 |
9 |
ERER K S , TEKIN R . Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (10): 2448- 2454.
doi: 10.2514/1.G000414 |
10 |
TEKIN R , ERER K S , HOLZAPFEI F . Adaptive impact time control via look-angle shaping under varying velocity[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (12): 3247- 3255.
doi: 10.2514/1.G002981 |
11 | KIM H G , LEE J Y , KIM H J , et al. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1602- 1612. |
12 |
赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29 (6): 1605- 1611.
doi: 10.3321/j.issn:1000-6893.2008.06.031 |
ZHAO S Y , ZHOU R . Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (6): 1605- 1611.
doi: 10.3321/j.issn:1000-6893.2008.06.031 |
|
13 |
ZADKA B , TRIPATHY T , TSALIK R , et al. Consensus-based cooperative geometrical rules for simultaneous target interception[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (12): 2425- 2432.
doi: 10.2514/1.G005065 |
14 |
刘翔, 梁晓庚. 攻击角约束多拦截弹协同制导控制一体化研究[J]. 西北工业大学学报, 2019, 37 (2): 273- 282.
doi: 10.3969/j.issn.1000-2758.2019.02.009 |
LIU X , LIANG X G . Integrated guidance and control of multiple interceptors with impact angle constraints considered[J]. Journal of Northwestern Polytechnical University, 2019, 37 (2): 273- 282.
doi: 10.3969/j.issn.1000-2758.2019.02.009 |
|
15 |
ZHAO J B , YANG S X . Integrated cooperative guidance framework and cooperative guidance law for multi-missile[J]. Chinese Journal of Aeronautics, 2018, 31 (3): 546- 555.
doi: 10.1016/j.cja.2017.12.013 |
16 |
YU H , DAI K R , LI H J , et al. Distributed cooperative guidance law for multiple missiles with input delay and topology switching[J]. Journal of the Franklin Institute, 2021, 358 (17): 9061- 9085.
doi: 10.1016/j.jfranklin.2021.09.018 |
17 |
LI G F , WU Y J , XU P Y . Fixed-time cooperative guidance law with input delay for simultaneous arrival[J]. International Journal of Control, 2021, 94 (6): 1664- 1673.
doi: 10.1080/00207179.2019.1662947 |
18 |
LYU T , GUO Y N , LI C J , et al. Multiple missiles cooperative guidance with simultaneous attack requirement under directed topologies[J]. Aerospace Science and Technology, 2019, 89, 100- 110.
doi: 10.1016/j.ast.2019.03.037 |
19 | KUMAR S R , MULJERJEE D . Cooperative salvo guidance using finite-time consensus over directed cycles[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1504- 1514. |
20 |
WANG X X , LU H Q , HUANG X L , et al. Three-dimensional time-varying sliding mode guidance law against maneuvering targets with terminal angle constraint[J]. Chinese Journal of Aeronautics, 2022, 35 (4): 303- 319.
doi: 10.1016/j.cja.2021.05.019 |
21 |
LI W , WEN Q Q , HE L , et al. Three-dimensional impact angle constrained distributed cooperative guidance law for anti-ship missiles[J]. Journal of Systems Engineering and Electro-nics, 2021, 32 (2): 447- 459.
doi: 10.23919/JSEE.2021.000038 |
22 |
LYU T , LI C J , GUO Y N , et al. Three-dimensional finite-time cooperative guidance for multiple missiles without radial velocity measurements[J]. Chinese Journal of Aeronautics, 2019, 32 (5): 1294- 1304.
doi: 10.1016/j.cja.2018.12.005 |
23 |
HE S M , KIM M , SONG T , et al. Three-dimensional salvo attack guidance considering communication delay[J]. Aerospace Science and Technology, 2018, 73, 1- 9.
doi: 10.1016/j.ast.2017.11.019 |
24 |
AI X L , WANG L L , YU J Q , et al. Field-of-view constrained two-stage guidance law design for three-dimensional salvo attack of multiple missiles via an optimal control approach[J]. Aerospace Science and Technology, 2019, 85, 334- 346.
doi: 10.1016/j.ast.2018.11.052 |
25 |
CHEN Y D , WANG J , WANG C Y , et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (2): 389- 397.
doi: 10.2514/1.G004681 |
26 |
CHEN Z Y , CHEN W C , LIU X M , et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology, 2021, 110, 106523.
doi: 10.1016/j.ast.2021.106523 |
27 |
ZUO Z Y . Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54, 305- 309.
doi: 10.1016/j.automatica.2015.01.021 |
28 |
MORENO J A . On strict Lyapunov functions for some non-homogeneous super-twisting algorithms[J]. Journal of the Franklin Institute, 2014, 351 (4): 1902- 1919.
doi: 10.1016/j.jfranklin.2013.09.019 |
29 |
BHAT S P , BERNSTEIN D S . Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38 (3): 751- 766.
doi: 10.1137/S0363012997321358 |
30 |
YU S , YU X H , SHIRINZADEH B , et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41 (11): 1957- 1964.
doi: 10.1016/j.automatica.2005.07.001 |
31 |
ZHANG C , GUTIERREZ S V , PLESTAN F , et al. Adaptive super-twisting control of floating wind turbines with collective blade pitch control[J]. IFAC-PapersOnLine, 2019, 52 (4): 117- 122.
doi: 10.1016/j.ifacol.2019.08.165 |
[1] | Xiaowei FU, Jing PAN. Distributed formation control of UAV swarm with dynamic obstacle avoidance [J]. Systems Engineering and Electronics, 2022, 44(2): 529-537. |
[2] | Shuangshuang WANG, Chuntao LI, Zhen WANG, Zikang SU, Fei DAI. Design of carrier landing controller based on adaptive dynamic inversion [J]. Systems Engineering and Electronics, 2022, 44(1): 218-225. |
[3] | Yiming ZHANG, Jianliang AI. Positioning of aerial refueling drogue and docking control based on binocular vision [J]. Systems Engineering and Electronics, 2021, 43(10): 2940-2953. |
[4] | Yadong CHEN, Zhongwen CHEN, Jianan WANG, Jiayuan SHAN. Cooperative guidance and control method based on air data sensor [J]. Systems Engineering and Electronics, 2020, 42(9): 2060-2065. |
[5] | Zongxing LI, Rui ZHANG. Missile adaptive attitude control based on Riccati equation [J]. Systems Engineering and Electronics, 2020, 42(6): 1358-1365. |
[6] | TANG Weiqiang, LONG Wenkun, SUN Lijuan, HUANG Xiaoli. Multiple model adaptive control of nonlinear systems based on clustering method and neural network [J]. Systems Engineering and Electronics, 2019, 41(9): 2100-2106. |
[7] | TAO Jiawei, ZHANG Tao. Coupled control of relative position and attitude for spacecraft proximity operations with prescribed performance [J]. Systems Engineering and Electronics, 2019, 41(5): 1103-1109. |
[8] | LI Guiying, YU Zhigang, ZHANG Yang. Cooperative guidance law with angle constraint to intercept maneuvering target [J]. Systems Engineering and Electronics, 2019, 41(3): 626-635. |
[9] | ZHONG Jingyang, SONG Bifeng. Position control of a tail-sitter MAV based on L1 adaptive controller in hover stage [J]. Systems Engineering and Electronics, 2018, 40(9): 2062-2070. |
[10] | SHEN Zhipeng, WANG Ru. Adaptive sliding mode trajectory tracking control of underactuated ship based on DSC-MLP [J]. Systems Engineering and Electronics, 2018, 40(3): 643-651. |
[11] | WANG Chao, ZHANG Shengxiu, SONG Zibiao, YANG Jianye, WU Xiaolu. Aircraft anti-windup of robust adaptive nonlinear predictive control [J]. Systems Engineering and Electronics, 2018, 40(2): 393-400. |
[12] | WEI Yang, XU Haojun, XUE Yuan. Adaptive disturbance rejection controller design for UAV three dimensional formation keeping#br# [J]. Systems Engineering and Electronics, 2018, 40(12): 2758-2765. |
[13] | XIA Chuan, DONG Chaoyang, WANG Qing, CHENG Haoyu. Adaptive integrated guidance and control backstepping sliding mode design for blended control missile#br# [J]. Systems Engineering and Electronics, 2018, 40(10): 2325-2333. |
[14] | SI Wenjie, DONG Xunde, ZENG Wei. Adaptive output-feedback control of an uncertain strict-feedback time-delay system [J]. Systems Engineering and Electronics, 2017, 39(6): 1325-1333. |
[15] | LU Xiaodong, ZHAO Hui, ZHAO Bin, ZHOU Jun. Novel backstepping attitude control method for interception missile based on disturbance compensation [J]. Systems Engineering and Electronics, 2017, 39(5): 1100-1106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||