Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3671-3679.doi: 10.12305/j.issn.1001-506X.2023.11.36
• Communications and Networks • Previous Articles Next Articles
Junfeng SUN1,2,*, Chenghai LI1, Bo CAO1
Received:
2022-05-03
Online:
2023-10-25
Published:
2023-10-31
Contact:
Junfeng SUN
CLC Number:
Junfeng SUN, Chenghai LI, Bo CAO. Network security situation prediction based on TCN-BiLSTM[J]. Systems Engineering and Electronics, 2023, 45(11): 3671-3679.
1 | ZHANG B, JI S P, XU J E, et al. Network security situation prediction model based on EMD and ELPSO optimized BiGRU neural network[EB/OL]. [2022-04-26]. https://doi.org/10.21203/rs.3.rs-778136/v1. |
2 | 赵冬梅, 李志坚. 基于Transformer的网络安全态势预测[J]. 华中科技大学学报(自然科学版), 2022, 50 (5): 46- 52. |
ZHAO D M , LI Z J . Network security situation prediction based on Transformer[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50 (5): 46- 52. | |
3 | 唐延强, 李成海, 王坚, 等. IGAPSO-ELM: 一种网络安全态势预测模型[J]. 电光与控制, 2022, 29 (2): 30- 35. |
TANG Y Q , LI C H , WANG J , et al. IGAPSO-ELM: a network security posture prediction model[J]. Electro-Optics and Control, 2022, 29 (2): 30- 35. | |
4 |
LI R X , LI F , WU C W , et al. Research on vehicle network security situation prediction based on improved CLPSO-RBF[J]. Journal of Physics: Conference Series, 2021, 1757 (1): 012148.
doi: 10.1088/1742-6596/1757/1/012148 |
5 | 何春蓉, 朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43 (1): 258- 266. |
HE C R , ZHU J . An attention mechanism-based security posture prediction method for GRU neural networks[J]. Systems Engineering and Electronics, 2021, 43 (1): 258- 266. | |
6 | 中国互联网信息中心. 2012至2022年网络安全信息与动态周报[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html. |
National Internet Emergency Center. Weekly report on network security information from 2012 to 2022[EB/OL]. [2022-04-20]. https://www.cert.org.cn/publish/main/index.html. | |
7 | BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1803.01271. |
8 |
HEWAGE P , BEHERA A , TROVATI M , et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24 (21): 16453- 16482.
doi: 10.1007/s00500-020-04954-0 |
9 | ZHANG R J , SUN F , SONG Z W , et al. Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021, 1338607. |
10 | HU D. An introductory survey on attention mechanisms in NLP problems[C]//Proc. of SAI Intelligent Systems Conference, 2019: 432-448. |
11 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9, 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
12 |
PRIHATNO A T , NURCAHYANTO H , AHMED M F , et al. Forecasting PM2. 5 concentration using a single-dense layer BiLSTM method[J]. Electronics, 2021, 10 (15): 1808.
doi: 10.3390/electronics10151808 |
13 |
PENG T , ZHANG C , ZHOU J Z , et al. An integrated framework of bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221, 119887.
doi: 10.1016/j.energy.2021.119887 |
14 | WRIGHT L, DEMEURE N. Ranger21: a synergistic deep learning optimizer[EB/OL]. [2022-04-23]. https://arxiv.org/abs/2016.13731. |
15 | LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1908.03265. |
16 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1711.05101. |
17 | ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: k steps forward, 1 step back[EB/OL]. [2022-04-23]. https://arxiv.org/abs/1907.08610. |
18 | CARLISLE A, DOZIER G. An off-the-shelf PSO[C]//Proc. of the Workshop on Particle Swarm Optimization, 2001. |
19 |
MUNKHDALAI L . An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114.
doi: 10.1109/ACCESS.2019.2930069 |
20 | WANG G . Comparative study on different neural networks for network security situation prediction[J]. Security and Privacy, 2021, 4 (1): e138. |
21 | JAIS I K M , ISMAIL A R , NISA S Q . Adam optimization algorithm for wide and deep neural network[J]. Knowledge Engineering and Data Science, 2019, 2 (1): 41- 46. |
22 | WANG Y J, ZHOU P Y, ZHONG W Y. An optimization strategy based on hybrid algorithm of ADAM and SGD[C]//MATEC Web of Conferences, 2018, 232: 03007. |
23 | LYDIA A , FRANCIS S . Adagrad-an optimizer for stochastic gradient descent[J]. International Journal of Information and Computing Science, 2019, 6 (5): 566- 568. |
24 | YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proc. of the International Conference on Rough Sets and Knowledge Technology, 2014: 364-375. |
25 | BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]//Proc. of the 27th International Conference on Machine Learning, 2010: 111-118. |
26 | NAGI J, DUCATELLE F, DI CARO G A, et al. Max-pooling convolutional neural networks for vision-based hand gesture recognition[C]//Proc. of the 2011 IEEE International Confe-rence on Signal and Image Processing Applications, 2011: 342-347. |
27 | WANG S H , KHAN M A , GOVINDARAJ V , et al. Deep rank-based average pooling network for COVID-19 recognition[J]. Computers, Materials & Continua, 2022, 70 (2): 2797- 2813. |
28 | LI C S , TANG G , XUE X M , et al. Short-term wind speed interval prediction based on ensemble GRU model[J]. IEEE Trans.on Sustainable Energy, 2019, 11 (3): 1370- 1380. |
29 | MUNKHDALAI L , MUNKHDALAI T , PARK K H , et al. An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019, 7, 99099- 99114. |
30 | DU J , CHENG Y Y , ZHOU Q , et al. Power load forecasting using BiLSTM-attention[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440 (3): 032115. |
[1] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[2] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[3] | Ying ZENG, Yanfeng LI, Hongyi WANG, Huaming QIAN, Hongzhong HUANG. Reliability analysis of industrial robot driver combining MRGP and PSO [J]. Systems Engineering and Electronics, 2023, 45(8): 2643-2650. |
[4] | Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection [J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248. |
[5] | Leilei ZHANG, Xi LIU, Xulin LIU, Hongjun YANG, Feng ZHANG. Accelerated storage life assessment method under zero-failure data for electromechanical products of missile [J]. Systems Engineering and Electronics, 2023, 45(7): 2287-2294. |
[6] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(3): 708-716. |
[7] | Pengyu CAO, Chengzhi YANG, Zesheng CHEN, Lu WANG, Limeng SHI. Radar signal recognition method based on deep residual shrinkage attention network [J]. Systems Engineering and Electronics, 2023, 45(3): 717-725. |
[8] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[9] | Xinxin RU, Xiaoguang GAO, Yangyang WANG. Bayesian network parameter learning based on fuzzy constraints [J]. Systems Engineering and Electronics, 2023, 45(2): 444-452. |
[10] | Yanyan HUANG, Shaoyan GAI, Feipeng DA. Image matching algorithm based on attention mechanism of three branch spatial transformation [J]. Systems Engineering and Electronics, 2023, 45(11): 3363-3373. |
[11] | Chenghui QI, Dengyin ZHANG. Progressive image dehaze based on perceptual fusion [J]. Systems Engineering and Electronics, 2023, 45(11): 3419-3427. |
[12] | Shengyang HE, Jiepeng DU, Yaqin ZHAO, Baoying WANG, Liang ZHAO, Longwen WU. TDOA-based cooperative single target location using UAV cluster [J]. Systems Engineering and Electronics, 2023, 45(1): 1-8. |
[13] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[14] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[15] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||