Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (7): 1756-1765.doi: 10.12305/j.issn.1001-506X.2021.07.04
• Radar sparse signal processing technology • Previous Articles Next Articles
Rui ZHANG1, Yinghui QUAN2,*, Shengqi ZHU1, Yachao LI1, Mengdao XING1
Received:
2020-12-29
Online:
2021-06-30
Published:
2021-07-08
Contact:
Yinghui QUAN
CLC Number:
Rui ZHANG, Yinghui QUAN, Shengqi ZHU, Yachao LI, Mengdao XING. Microwave correlation imaging method based on improved OMP algorithm for sparse targets[J]. Systems Engineering and Electronics, 2021, 43(7): 1756-1765.
1 | 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005. |
BAO Z , XING M D , WANG T . Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005. | |
2 |
BIE B , QUAN Y , SUN G C , et al. A modified range model and Doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (11): 1923- 1927.
doi: 10.1109/LGRS.2019.2959660 |
3 |
YOU D , SUN G C , XIA X G , et al. Time-varying baseline error estimation and compensation in UAV SAR interferometry based on time-domain sub-aperture of raw radar data[J]. IEEE Sensors Journal, 2020, 20 (20): 12203- 12216.
doi: 10.1109/JSEN.2020.3000335 |
4 | MEI H W , LI Y C , XING M D , et al. Correction of a frequency domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5820- 5820. |
5 |
PITTMAN T B , SHIH Y H , STREKALOV D V , et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52 (5): 3429- 3432.
doi: 10.1103/PhysRevA.52.R3429 |
6 |
LI D Z , LI X , QIN Y L , et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (4): 2261- 2277.
doi: 10.1109/TGRS.2013.2258929 |
7 | XU K J , PEDRYCZ W , LI Z W . Augmentation of the reconstruction performance of fuzzy C-means with an optimized fuzzification factor vector[J]. Knowledge-based Systems, 2021, 222 (5): 6951- 6961. |
8 |
QUAN Y H , TONG Y P , FENG W , et al. A novel image fusion method of multi-spectral and SAR images for land cover classification[J]. Remote Sensing, 2020, 12 (22): 3801- 3821.
doi: 10.3390/rs12223801 |
9 |
QUAN Y H , TONG Y P , FENG W , et al. Relative total variation structure analysis-based fusion method for hyperspectral and lidar data classification[J]. Remote Sensing, 2021, 13 (6): 1143- 1164.
doi: 10.3390/rs13061143 |
10 | QUAN Y H , ZHANG R , LI Y C , et al. Microwave correlation forward-looking super-resolution imaging based on compressed sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 1780- 1799. |
11 | ZHOU X L, WANG H Q, CHENG Y Q, et al. A fast radar coincidence imaging approach for sparse target[C]//Proc. of the International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2017. |
12 | 周海飞. 基于时空随机辐射场的微波凝视成像新方法及其辐射源特性研究[D]. 合肥: 中国科学技术大学, 2011. |
ZHOU H F. Research on a new method of microwave staring imaging based on spatial-temporal random radiation field and characteristics of random radiation source[D]. Hefei: University of Science and Technology of China, 2011. | |
13 | 马远鹏. 基于时空两维随机辐射场的微波凝视关联成像初探[D]. 合肥: 中国科学技术大学, 2013. |
MA Y P. Preliminary research on microwave staring correlated imaging based on temporal-spatial stochastic radiation fields[D]. Hefei: University of Science and Technology of China, 2011. | |
14 | LIU B , WANG D J . Orthogonal radiation field construction for microwave staring correlated imaging[J]. Progress in Electromagnetics Research M, 2017, 57 (3): 139- 149. |
15 | MARQUES E C , MACIEL N , NAVINER L , et al. A review of sparse recovery algorithms[J]. Quality Control, Transactions, 2019, 7 (4): 1300- 1322. |
16 |
KNILL C , ROOS F , SCHWEIZER B , et al. Random multiplexing for MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29 (4): 300- 302.
doi: 10.1109/LMWC.2019.2901405 |
17 | YU S Q, ZHANG Q H, QIN Q, et al. Microwave imaging of inhomogeneous objects based on Bayesian compressed sensing[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019. |
18 | 许然. 提高雷达成像质量的若干新体制和新方法研究[D]. 西安: 西安电子科技大学, 2015. |
XU R. Study on new systems and techniques for improving radar imaging performances[D]. Xi'an: Xidian University, 2015. | |
19 | ZHA G F , WANG H Q , YANG Z , et al. Adaptive sparse reconstruction with joint parametric estimation for high-speed uniformly moving targets in coincidence imaging radar[J]. Journal of Applied Remote Sensing, 2017, 10 (2): 1- 17. |
20 | ZHU Z Y, XU F, WANG H P, et al. Microwave imaging of non-rigid moving target using 2D sparse MIMO array[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018. |
21 | CHEN Y A, ZHANG Q, SUN L, et al. Moving target imaging based on sparse SIMO radar with multiple carrier frequencies[C]//Proc. of the IET International Radar Conference, 2015. |
22 |
LI D Z , LI X , CHENG Y Q , et al. Radar coincidence imaging in the presence of target-motion-induced error[J]. Journal of Electronic Imaging, 2014, 23 (2): 023014.
doi: 10.1117/1.JEI.23.2.023014 |
23 | ZHOU X L , WANG H Q , CHENG Y Q , et al. Sparse auto-calibration for radar coincidence imaging with gain-phase errors[J]. Sensors, 2018, 15 (11): 27611- 27624. |
24 | ZHU S T , ZHANG A X , XU Z , et al. Radar coincidence imaging with random microwave source[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14 (1): 1239- 1242. |
25 |
GUO Y Y , HE X Z , WANG D J . A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science and Technology, 2013, 24 (7): 074013.
doi: 10.1088/0957-0233/24/7/074013 |
26 | ZHANG R, QUAN Y H, XU R, et al. High-resolution imaging based on temporal-spatial stochastic radiation field and compressive sensing theory[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020. |
27 | 查国峰. 运动目标微波关联成像技术研究[D]. 长沙: 国防科学技术大学, 2016. |
ZHA G F. Microwave coincidence imaging technique research for moving target[D]. Changsha: National University of Defense Technology, 2016. | |
28 |
LIU W , MENG J , ZHOU L . Impact analysis of DRFM-based active jamming to radar detection efficiency[J]. The Journal of Engineering, 2019, 2019 (20): 6856- 6858.
doi: 10.1049/joe.2019.0501 |
29 |
RAMEZ E , RADWAN K . Costas-code-based radar waveform design using adaptive weights with target scattering coefficients and optimal variable time spacing with improved ambiguity function[J]. The Institution of Engineering and Technology Radar, Sonar and Navigation, 2020, 14 (12): 1905- 1917.
doi: 10.1049/iet-rsn.2020.0133 |
30 |
BARANIUK R G , GOLDSTEIN T , SANKARANARAYANAN A C , et al. Compressive video sensing: algorithms, architectures, and applications[J]. IEEE Signal Processing Magazine, 2017, 34 (1): 52- 66.
doi: 10.1109/MSP.2016.2602099 |
[1] | Tianyi JIA, Jingjie GAO, Xiaohong SHEN, Hongwei LIU. Moving underwater vehicle localization with uncertain sound speed [J]. Systems Engineering and Electronics, 2022, 44(9): 2699-2706. |
[2] | Wenjing LI, Zhuolin LI, Zhentao YUAN. Sea clutter suppression and target extraction algorithm based on sparse reconstruction [J]. Systems Engineering and Electronics, 2022, 44(3): 777-785. |
[3] | Siyu DU, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Waveform optimization for SFA radar based on evolutionary particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(3): 834-840. |
[4] | Shuxian DONG, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming [J]. Systems Engineering and Electronics, 2022, 44(11): 3371-3379. |
[5] | Zengmao CHEN, Li LU, Zhiguo SUN, Rongchen SUN. Parameter estimation algorithm of convolutional codes with solving cost function based on conjugate gradient [J]. Systems Engineering and Electronics, 2022, 44(10): 3235-3242. |
[6] | Yan ZHANG, Baoping WANG, Yang FANG, Zuxun SONG. Microwave 3D imaging method based on orthogonal spectrum reconstruction [J]. Systems Engineering and Electronics, 2021, 43(8): 2090-2098. |
[7] | Yan ZHANG, Chunmao YE, Yaobin LU, Xuebin CHEN. Jamming suppression method for hyperbolic frequency modulated waveform based on sparse reconstruction [J]. Systems Engineering and Electronics, 2021, 43(7): 1766-1774. |
[8] | Wen FANG, Yinghui QUAN, Minghui SHA, Zhixing LIU, Xia GAO, Mengdao XING. Dense false targets jamming suppression algorithm based on frequency agility and waveform entropy [J]. Systems Engineering and Electronics, 2021, 43(6): 1506-1514. |
[9] | Xun DING, Jindong ZHANG, Na WANG, Yuying WANG. System phase error estimation and sparse scene reconstruction algorithm of frequency agile radar based on coherent accumulation [J]. Systems Engineering and Electronics, 2021, 43(6): 1515-1523. |
[10] | Kunyang HUANG, Xianyi LIU, Zhili ZHANG. Application of improved least squares algorithm in astronomy positioning [J]. Systems Engineering and Electronics, 2021, 43(6): 1659-1663. |
[11] | Baojie CAI, Lei SHAO. Robust filtering algorithm based on three discriminant domain and least squares fitting [J]. Systems Engineering and Electronics, 2021, 43(5): 1346-1353. |
[12] | Manying WANG, Xiaofeng GONG, Ruisen LUO, Tong BIAN, Zhiyuan WANG. Joint blind parameter estimation of frequency hopping signal based on adaptive morphology [J]. Systems Engineering and Electronics, 2021, 43(5): 1398-1405. |
[13] | Binbin LI, Hui CHEN, Weijian LIU, Zhaojian ZHANG, Bilei ZHOU. Joint multi-dimensional parameters estimation for large-sized electromagnetic vector sensor array based on sparse reconstruction in limited snapshots [J]. Systems Engineering and Electronics, 2021, 43(4): 868-874. |
[14] | Fei YU, Yun YU, Lihui ZHOU, Chunguang PENG. Hyperparameter-free sparse signal direction-of-arrival estimation method with single-snapshot [J]. Systems Engineering and Electronics, 2021, 43(4): 894-900. |
[15] | Dou SUN, Shiqi XING, Haifeng GAO, Bo PANG, Yongzhen LI, Xuesong WANG. 3D sparse imaging for non-uniformly sampled SAR based on feature enhancement [J]. Systems Engineering and Electronics, 2021, 43(4): 901-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||