Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (7): 1748-1755.doi: 10.12305/j.issn.1001-506X.2021.07.03
• Radar sparse signal processing technology • Previous Articles Next Articles
Weixing YANG1,2, Daiyin ZHU1,2,*
Received:
2020-12-29
Online:
2021-06-30
Published:
2021-07-08
Contact:
Daiyin ZHU
CLC Number:
Weixing YANG, Daiyin ZHU. Iterative imaging algorithm for SAR azimuth random missing data with sparse scenes[J]. Systems Engineering and Electronics, 2021, 43(7): 1748-1755.
Table 3
MSE of two reconstruction algorithms in nine-point targets areas when the azimuth missing rate is 25% and 50%"
算法 | 目标 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
方位向任意缺失25%数据(本文算法) | 1.331 8 | 9.816 9 | 0.303 7 | 0.024 4 | 0.156 7 | 0.017 1 | 0.692 4 | 3.251 5 | 0.430 9 |
方位向任意缺失25%数据(IST算法) | 97.098 7 | 84.826 6 | 71.133 0 | 80.744 9 | 69.130 7 | 61.572 2 | 83.202 8 | 70.902 4 | 61.241 7 |
方位向任意缺失50%数据(本文算法) | 5.141 3 | 7.010 1 | 1.693 0 | 0.226 1 | 4.209 8 | 0.099 0 | 2.834 7 | 3.491 2 | 2.221 0 |
方位向任意缺失50%数据(IST算法) | 93.986 3 | 83.488 6 | 69.106 7 | 80.397 0 | 70.660 7 | 59.565 1 | 83.130 5 | 69.304 0 | 60.079 3 |
Table 4
Target background ratio of six ships in the proposed algorithm and IST reconstruction algorithm"
算法 | 目标 | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
方位向全孔径数据(Chirp-Scaling算法) | 44.126 4 | 49.521 1 | 42.320 6 | 50.0812 | 40.442 9 | 40.944 8 |
方位向任意缺失25%数据(本文算法) | 79.505 5 | 90.705 3 | 116.451 3 | 84.030 7 | 81.914 4 | 79.018 1 |
方位向任意缺失25%数据(IST算法) | 69.042 8 | 71.911 2 | 71.525 1 | 72.455 3 | 68.776 9 | 66.573 8 |
方位向任意缺失50%数据(本文算法) | 92.004 2 | 101.174 6 | 93.708 9 | 92.097 1 | 90.017 2 | 85.451 0 |
方位向任意缺失50%数据(IST算法) | 73.110 5 | 77.309 3 | 75.190 3 | 76.626 4 | 73.537 5 | 69.357 0 |
Table 5
The MSE of six ship targets areas of the algorithm proposed in this paper and IST reconstruction algorithm"
算法 | 目标 | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
方位向任意缺失25%数据(本文算法) | 2.741 2 | 4.535 9 | 1.320 5 | 1.428 3 | 2.507 7 | 1.828 7 |
方位向任意缺失25%数据(IST算法) | 10.599 7 | 19.079 0 | 11.647 4 | 17.940 3 | 12.312 6 | 12.404 4 |
方位向任意缺失50%数据(本文算法) | 3.980 2 | 12.078 0 | 4.705 9 | 7.123 9 | 6.164 9 | 5.010 2 |
方位向任意缺失50%数据(IST算法) | 21.695 3 | 35.319 6 | 23.118 7 | 37.114 8 | 22.336 1 | 22.508 0 |
1 | MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoence & Remote Sensing Magazine, 2013, 1 (1): 6- 43. |
2 | 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7 (6): 633- 654. |
HONG W , WANG Y P , LIN Y , et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7 (6): 633- 654. | |
3 | 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33. |
DENG Y K , YU W D , ZHANG H , et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9 (1): 1- 33. | |
4 | BRUDER J A, SCHNEIBLE R. Interrupted SAR waveforms for high interrupt ratios[C]//Proc. of the Institution of Engineer and Technology International Conference on Radar Systems, 2007. |
5 |
SALZMAN J , AKAMINE D , LEFEVER R , et al. Interrupted synthetic aperture radar (SAR)[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17 (5): 33- 39.
doi: 10.1109/62.1001990 |
6 | IVANA S , KARL W C , NOVAK L . Reconstruction of interrupted SAR imagery for persistent surveillance change detection[J]. Algorithms for Synthetic Aperture Radar Imagery, 2012, 8746 (1): 87460. |
7 | AHMED N, UNDERWOOD C. Monostatic CW-SAR concept for microsatellites[C]//Proc. of the 8th European Conference on Synthetic Aperture Radar, 2010. |
8 | BROERSEN P, WAELE S, BOS R. Estimation of autoregre-ssive spectra with randomly missing data[C]//Proc. of the 20th IEEE Instrumentation and Measurement Technology Confe-rence, 2003. |
9 |
STOICA P , LARSSON E G , LI A J . Adaptive filter-bank approach to restoration and spectral analysis of gapped data[J]. Astronomical Journal, 2000, 120 (4): 2163- 2173.
doi: 10.1086/301572 |
10 |
WANG Y W , STOICA P , et al. Nonparametric spectral analysis with missing data via the EM algorithm[J]. Digital Signal Processing, 2005, 15 (2): 191- 206.
doi: 10.1016/j.dsp.2004.10.004 |
11 |
TARIK Y , LI J , PETRE S , et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (1): 425- 443.
doi: 10.1109/TAES.2010.5417172 |
12 |
VU D , XU L , XUE M , et al. Nonparametric missing sample spectral analysis and its applications to interrupted SAR[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6 (1): 1- 14.
doi: 10.1109/JSTSP.2011.2168192 |
13 |
PATEL V M , EASLEY G R , HEALY D M , et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2): 244- 254.
doi: 10.1109/JSTSP.2009.2039181 |
14 | TELLO A M T , LOPEZ D F , MALLORQUI J J . A novel strategy for radar imaging based on compressive sensing[J]. IEEE Trans.on Geoence and Remote Sensing, 2011, 48, 4285- 4295. |
15 | BARANIUK R, STEEGHA P. Compressive radar imaging[C]//Proc. of the IEEE Radar Conference, 2007. |
16 |
ZENG J S , FANG J , XU Z B . Sparse SAR imaging based on L1/2 regularization[J]. Science China Information Sciences, 2012, 55 (8): 1755- 1775.
doi: 10.1007/s11432-012-4632-5 |
17 | YANG J G , THOMPSON J , HUANG X T , et al. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Trans.on Geoence & Remote Sensing, 2013, 51 (7): 4214- 4225. |
18 | FANG J , XU Z B , ZHANG B C , et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 7 (1): 352- 363. |
19 |
WRIGHT S J , NOWAK R D , MÁRIO A T F . Sparse reconstruction by separable approximation[J]. IEEE Trans.on Signal Processing, 2009, 57 (7): 2479- 2493.
doi: 10.1109/TSP.2009.2016892 |
20 |
FANG J , WU Y R , XU Z B , et al. Efficient regularization algorithm with range-azimuth decoupled for SAR imaging[J]. Electronics Letters, 2014, 50 (3): 204- 205.
doi: 10.1049/el.2013.1989 |
21 | BI H , ZHANG B C , ZHU X X , et al. Extended chirp scaling-baseband azimuth scaling-based azimuth-range decouple L1 re-gularization for tops SAR imaging via CAMP[J]. IEEE Trans.on Geoscience & Remote Sensing, 2017, 55 (7): 3748- 3763. |
22 |
BI H , ZHANG B C , ZHU X X , et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (6): 3426- 3440.
doi: 10.1109/TGRS.2017.2671519 |
23 |
BI H , BI G A , ZHANG B C , et al. From theory to application: real-time sparse SAR imaging[J]. IEEE Trans.on Geoscience and Remote Sensin, 2020, 58 (4): 2928- 2936.
doi: 10.1109/TGRS.2019.2958067 |
24 |
RANEY K , RUNGE H , BAMLER R , et al. Precision SAR processing using chirp scaling[J]. IEEE Trans.on Geoscience and Remote Sensing, 1994, 32 (4): 786- 799.
doi: 10.1109/36.298008 |
25 | 吴一戎, 洪文, 张冰尘. 稀疏微波成像导论[M]. 北京: 科学出版社, 2018. |
WU Y R , HONG W , ZHANG B C . Introduction to sparse microwave imaging[M]. Beijing: Science Press, 2018. | |
26 | 李清泉, 王欢. 基于稀疏表示理论的优化算法综述[J]. 测绘地理信息, 2019, 44 (4): 1- 9. |
LI Q Q , WANG H . Sparse representation-based optimization: a surey[J]. Journal of Geomatics, 2019, 44 (4): 1- 9. | |
27 | CAI J F , OSHER S , SHEN Z W . Linearized bregman iterations for compressed sensing[J]. Mathematics of Computation, 2008, 78 (2): 1515- 1536. |
28 |
CAI J F , OSHER S , SHEN Z . Linearized bregman iterations for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2 (1): 226- 252.
doi: 10.1137/080733371 |
29 | QIAO T , LI W , WU B . A new algorithm based on linearized bregman iteration with generalized inverse for compressed sensing[J]. Circuits Systems & Signal Processing, 2014, 33 (5): 1527- 1539. |
30 | 洪文, 胡东辉, 吴一戎, 等. 合成孔径雷达成像——算法与实现[M]. 北京: 电子工业出版社, 2007. |
HONG W , HU D H , WU Y R , et al. Digital processing of synthetic aperture radar data: algorithms and implementation[M]. Beijing: Electronics industry Press, 2007. | |
31 | SAMADI S , CETIN M , MASNADI-SHIRAZI M A . Sparse representation-based synthetic aperture radar imaging[J]. Institution of Engineer and Technology Radar Sonar & Navigation, 2011, 5 (2): 182- 193. |
[1] | Yameng KONG, Guoyu WANG, Dejun FENG. AFSS reflector double pulse cycle intermittent modulation method [J]. Systems Engineering and Electronics, 2022, 44(12): 3587-3594. |
[2] | Huaisheng XIN, Penghan SONG, Chen CAO. Multiple model based generalized labeled multi-Bernoulli filter [J]. Systems Engineering and Electronics, 2022, 44(12): 3603-3613. |
[3] | Jiazheng PEI, Yong HUANG, Baoxin CHEN, Jian GUAN, Xiaolong CHEN. Robust fast adaptive pulse compression method based on linearly constrained minimum variance principle [J]. Systems Engineering and Electronics, 2022, 44(12): 3621-3630. |
[4] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
[5] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[6] | Zhipeng WU, Ping ZHANG, Zhen LI, Lei HUANG, Chang LIU, Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3667-3675. |
[7] | Guiguang XU, Xudong WANG, Fei WANG, Guobing HU, Yongxing GAO, Zehu LUO. LPI radar emitter signals recognition in low SNR based on SE-ResNeXt network [J]. Systems Engineering and Electronics, 2022, 44(12): 3676-3684. |
[8] | Zhiyuan YOU, Guoping HU, Hao ZHOU. Bistatic nested MIMO radar based on redundant element optimization joint estimation method of target DOD and DOA [J]. Systems Engineering and Electronics, 2022, 44(12): 3696-3702. |
[9] | Yongpan WANG, Jianxin SU, Ming GONG, Hua LIU. Combat-oriented effect evaluation model of full function operation training of radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3766-3774. |
[10] | Xiaomin ZHU, Daqian LIU, Bowen FEI, Tong MEN. Cooperative search method for multiple UAVs under local communication [J]. Systems Engineering and Electronics, 2022, 44(12): 3783-3791. |
[11] | Yuchao YANG, Ming FANG, Chenfan ZHAO, Yueqi WANG, Gang FANG. Research on long-time coherent integration and parameter estimation algorithm of high-speed maneuvering targets [J]. Systems Engineering and Electronics, 2022, 44(12): 3811-3820. |
[12] | Zheng XU, Guangzhong GONG, Yunhua LUO, Guangde LI. Application of improved spatial variant apodization algorithm through constrained optimization in sidelobe suppression [J]. Systems Engineering and Electronics, 2022, 44(11): 3298-3304. |
[13] | Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network [J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356. |
[14] | Yali CAO, Meimei LI, Shihan QU, Xin SONG. Waveform design of cognitive radar based on joint criteria [J]. Systems Engineering and Electronics, 2022, 44(11): 3364-3370. |
[15] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||