Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (9): 2699-2706.doi: 10.12305/j.issn.1001-506X.2022.09.01
• Electronic Technology • Next Articles
Tianyi JIA1,2,*, Jingjie GAO3, Xiaohong SHEN2, Hongwei LIU1
Received:
2021-11-05
Online:
2022-09-01
Published:
2022-09-01
Contact:
Tianyi JIA
CLC Number:
Tianyi JIA, Jingjie GAO, Xiaohong SHEN, Hongwei LIU. Moving underwater vehicle localization with uncertain sound speed[J]. Systems Engineering and Electronics, 2022, 44(9): 2699-2706.
1 |
JIA T Y , HO K C , WANG H Y , et al. Effect of sensor motion on time delay and Doppler shift localization: analysis and solution[J]. IEEE Trans.on Signal Processing, 2019, 67 (22): 5881- 5895.
doi: 10.1109/TSP.2019.2946025 |
2 | 孙大军, 郑翠娥, 崔宏宇, 等. 水下传感器网络定位技术发展现状及若干前沿问题[J]. 中国科学: 信息科学, 2018, 48 (9): 1121- 1136. |
SUN D J , ZHENG C E , CUI H Y , et al. Developing status and some cutting-edge issues of underwater sensor network localization technology[J]. Scientia Sinica Informationis, 2018, 48 (9): 1121- 1136. | |
3 |
JIA T Y , WANG H Y , SHEN X H , et al. Target localization based on structured total least squares with hybrid TDOA-AOA measurements[J]. Signal Processing, 2018, 143, 211- 221.
doi: 10.1016/j.sigpro.2017.09.011 |
4 |
YAN J , ZHAO H Y , WANG Y Y , et al. Asynchronous localization for UASNs: an unscented transform-based method[J]. IEEE Signal Processing Letters, 2019, 26 (4): 602- 606.
doi: 10.1109/LSP.2019.2902273 |
5 |
YAN J , GONG Y D , CHEN C L , et al. AUV-aided localization for internet of underwater things: a reinforcement-learning-based method[J]. IEEE Internet of Things Journal, 2020, 7 (10): 9728- 9746.
doi: 10.1109/JIOT.2020.2993012 |
6 |
YANG R , BAR-SHALOM Y , HUANG H A J , et al. UGHF for acoustic tracking with state-dependent propagation delay[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 1747- 1761.
doi: 10.1109/TAES.2015.140386 |
7 | 赵晨, 乔钢, 周锋. 基于正交移动双水下自主潜航器的水下合作目标定位方法[J]. 电子与信息学报, 2021, 43 (3): 834- 841. |
ZHAO C , QIAO G , ZHOU F . Underwater cooperative target localization method based on double orthogonal moving autonomous underwater vehicles[J]. Journal of Electronics & Information Technology, 2021, 43 (3): 834- 841. | |
8 |
PAULL L , SAEEDI S , SETO M , et al. AUV navigation and localization: a review[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (1): 131- 149.
doi: 10.1109/JOE.2013.2278891 |
9 | ZOU Y B , LIU H P , WAN Q . Joint synchronization and localization in wireless sensor networks using semidefinite programming[J]. IEEE Internet of Things Journal, 2017, 5 (1): 199- 205. |
10 |
HAO B J , HO K C , LI Z . Range-based rigid body localization with a calibration emitter for mitigating anchor position uncertainties[J]. IEEE Trans.on Wireless Communications, 2019, 18 (12): 5734- 5748.
doi: 10.1109/TWC.2019.2938761 |
11 | YANG L , HO K C . Alleviating sensor position error in source localization using calibration emitters at inaccurate locations[J]. IEEE Trans.on Signal Processing, 2009, 58 (1): 67- 83. |
12 | 高婧洁, 申晓红, 王海燕. 单锚节点水声网络高精度低开销初始化方法[J]. 系统工程与电子技术, 2017, 39 (2): 425- 430. |
GAO J J , SHEN X H , WANG H Y . Initialization method for underwater acoustic networks with one anchor[J]. Systems Engineering and Electronics, 2017, 39 (2): 425- 430. | |
13 |
JIA T Y , HO K C , WANG H Y , et al. Localization of a moving object with sensors in motion by time delays and Doppler shifts[J]. IEEE Trans.on Signal Processing, 2020, 68, 5824- 5841.
doi: 10.1109/TSP.2020.3023972 |
14 |
GAO S C , ZHANG S J , WANG G , et al. Robust second-order cone relaxation for TW-TOA-based localization with clock imperfection[J]. IEEE Signal Processing Letters, 2016, 23 (8): 1047- 1051.
doi: 10.1109/LSP.2016.2580743 |
15 |
JIA T Y , SHEN X H , WANG H Y . Multistatic sonar localization with a transmitter[J]. IEEE Access, 2019, 7, 111192- 111203.
doi: 10.1109/ACCESS.2019.2934737 |
16 |
TOMIC S , BEKO M . Exact robust solution to TW-ToA-based target localization problem with clock imperfections[J]. IEEE Signal Processing Letters, 2018, 25 (4): 531- 535.
doi: 10.1109/LSP.2018.2810829 |
17 | THOMSON D, DOSSO S. AUV localization in an underwater acoustic positioning system[C]//Proc. of the IEEE Oceans, 2013: 1-6. |
18 |
ZHANG J C , HAN Y F , ZHENG C E , et al. Underwater target localization using long baseline positioning system[J]. Applied Acoustics, 2016, 111, 129- 134.
doi: 10.1016/j.apacoust.2016.04.009 |
19 | NEWMAN P, LEONARD J. Pure range-only sub-sea SLAM[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2003: 1921-1926. |
20 |
ZHANG J C , SHI C H , SUN D J , et al. High-precision, limited-beacon-aided AUV localization algorithm[J]. Ocean Engineering, 2018, 149, 106- 112.
doi: 10.1016/j.oceaneng.2017.12.003 |
21 |
LI Z , DOSSO S E , SUN D J . Motion compensated acoustic localization for underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (4): 840- 851.
doi: 10.1109/JOE.2015.2503518 |
22 | JIA T Y, HO K C, WANG H Y, et al. Accurate localization of AUV in motion by explicit solution using time delays[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4871-4875. |
23 | 封金星, 丁士圻, 惠俊英. 水下运动目标长基线定位解算研究[J]. 声学学报, 1996, 21 (5): 832- 837. |
FENG J X , DING S Q , HUI J Y . A solution of locating a moving object using long-base line acoustic system[J]. Acta Acustica, 1996, 21 (5): 832- 837. | |
24 |
JIA T Y , WANG H Y , SHEN X X , et al. Accurate closed-form solution for moving underwater vehicle localization using two-way travel time[J]. Electronics, 2020, 9 (4): 565.
doi: 10.3390/electronics9040565 |
25 |
ZHENG J , LUI K W , SO H C . Accurate three-step algorithm for joint source position and propagation speed estimation[J]. Signal Processing, 2007, 87 (12): 3096- 3100.
doi: 10.1016/j.sigpro.2007.06.014 |
26 |
ZHANG B B , HU Y C , WANG H Y , et al. Underwater source localization using TDOA and FDOA measurements with unknown propagation speed and sensor parameter errors[J]. IEEE Access, 2018, 6, 36645- 36661.
doi: 10.1109/ACCESS.2018.2852636 |
27 |
MAHAJAN A , WALWORTH M . 3D position sensing using the differences in the time-of-flights from a wave source to various receivers[J]. IEEE Trans.on Robotics and Automation, 2001, 17 (1): 91- 94.
doi: 10.1109/70.917087 |
28 |
HE C F , WANG Y Y , CHEN C L , et al. Target localization for a distributed SIMO sonar with an isogradient sound speed profile[J]. IEEE Access, 2018, 6, 29770- 29783.
doi: 10.1109/ACCESS.2018.2843438 |
29 | RAMEZANI H , JAMALI R H , LEUS G . Target localization and tracking for an isogradient sound speed profile[J]. IEEE Trans.on Signal Processing, 2012, 61 (6): 1434- 1446. |
30 |
YAN J , ZHAO H Y , WANG Y Y , et al. Asynchronous localization for UASNs: an unscented transform-based method[J]. IEEE Signal Processing Letters, 2019, 26 (4): 602- 606.
doi: 10.1109/LSP.2019.2902273 |
[1] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
[2] | Yi LIU, Xiaoxiong ZHOU, Guangjun CHENG. High dynamic carrier tracking technology in frequency hopping systems [J]. Systems Engineering and Electronics, 2022, 44(2): 677-683. |
[3] | Fei YU, Yun YU, Lihui ZHOU, Chunguang PENG. Hyperparameter-free sparse signal direction-of-arrival estimation method with single-snapshot [J]. Systems Engineering and Electronics, 2021, 43(4): 894-900. |
[4] | Zixuan LONG, Qi ZHOU, Xiafu PENG, Xiaoli ZHANG. Maximum correntropy Kalman filter used for hull deformation measurement in non-Gaussian environment [J]. Systems Engineering and Electronics, 2021, 43(11): 3278-3287. |
[5] | Donghua HUANG, Yongsheng ZHAO, Yongjun ZHAO. Target localization algorithm from DOA-TDOA measurements in passive radar with transmitter and receiver position errors [J]. Systems Engineering and Electronics, 2020, 42(9): 1961-1968. |
[6] | Hai LI, Di SONG, Ze HUYAN, Qing FENG, Zibo ZHUANG. Wind speed estimation of low-altitude wind-shear based on TDPC-JDL under LFMCW system [J]. Systems Engineering and Electronics, 2020, 42(7): 1504-1509. |
[7] | Hai LI, Zhixin LIU, Weijie CHENG, Zibo ZHUANG, Yi FAN. Low-altitude wind shear wind speed estimation method based on MBMC under sea clutter [J]. Systems Engineering and Electronics, 2020, 42(11): 2481-2487. |
[8] | Yan WANG, Yimin SHI. Statistical analysis of the dependent competing risks model under the double constant-stress accelerated life test [J]. Systems Engineering and Electronics, 2020, 42(11): 2644-2653. |
[9] | JIANG Yilin, LIU Mengnan, GAO Lipeng, CHEN Tao. Joint passive location method of TDOA and FDOA for moving multi-station [J]. Systems Engineering and Electronics, 2019, 41(7): 1441-1449. |
[10] | LI Hai, WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP [J]. Systems Engineering and Electronics, 2019, 41(3): 529-533. |
[11] | CHEN Xudan, SUN Xinli, JI Guoxun, LI Zhen. Mis-specification analysis of inverse Gaussian degradation processes model [J]. Systems Engineering and Electronics, 2019, 41(3): 693-700. |
[12] | CAI Zhongyi, XIANG Huachun, WANG Pan, WANG Zezhou, LI Chao. Missile storage lifetime assessment of multivariate degradation modeling under competition failure [J]. Systems Engineering and Electronics, 2018, 40(5): 1183-1188. |
[13] | XU Bo, LIU Dezheng, ZHANG Xun. Multiple AUV cooperative navigation algorithm of robust filter based on interacting model [J]. Systems Engineering and Electronics, 2017, 39(9): 2087-2093. |
[14] | LIU Yanchao, SHI Yimin, SHI Xiaolin. Reliability analysis of four-unit hybrid systems with masked data [J]. Systems Engineering and Electronics, 2017, 39(5): 1183-1188. |
[15] | JIN Yan, GAO Duo, JI Hongbing. Parameter estimation of LFM signal based on robust S transform in α stable distribution noise [J]. Systems Engineering and Electronics, 2017, 39(4): 693-699. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||