Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (4): 826-835.doi: 10.3969/j.issn.1001-506X.2020.04.13
Previous Articles Next Articles
Qijia YUN1(), Bifeng SONG1(
), Yang PEI1(
), Guankun WANG2(
)
Received:
2019-07-05
Online:
2020-03-28
Published:
2020-03-28
Supported by:
CLC Number:
Qijia YUN, Bifeng SONG, Yang PEI, Guankun WANG. Analysis of the factors influencing the combat effectiveness of airborne laser weapon system based on Agent modeling[J]. Systems Engineering and Electronics, 2020, 42(4): 826-835.
Table 1
Parameters in the simulation"
Agent | 参数 | 数值 |
飞机 | 突防速度Maa/Ma | 1.5 |
突防高度Ha/km | 10 | |
RCS σt/m2 | 0.1 | |
探测传感器焦距f/mm | 20 | |
粗跟踪焦距f/mm | 100 | |
精跟踪焦距f/mm | 400 | |
焦平面阵列分辨率rFPA/μm | 1 | |
光束质量因子β | 2 | |
激光波长λ/μm | 1.06 | |
激光聚焦距离R/km | 2~30 | |
环境 | 大气能见度VM/km | 20 |
大气密度kg/m3 | 1.29 | |
大气比热容cp/(J/kg·K) | 1 005 | |
大气折射率随温度变化率nT | 10-6 | |
气溶胶类型常数K | 4.543 | |
舰船 | 航行速度/节 | 20 |
雷达特征探测RCS σ0/m2 | 5 | |
雷达特征探测概率Pd0 | 0.9 | |
雷达特征探测距离R0/km | 100 | |
雷达特征虚警概率PFA0 | 10-6 | |
恒虚警处理参考单元数N | 16 | |
雷达搜索循环时间Ts/s | 5 | |
雷达跟踪循环时间Tt/s | 0.1 | |
导弹 | 导弹尺寸/m | 0.5×0.5×2 |
飞行速度Mam/Ma | 3 | |
导引头作用距离Rd/km | 10 | |
导引头材料对激光的吸收率 | 0.7 | |
毁伤阈值Ed/(kJ/cm2) | 1 |
1 | HECHT J . Half a century of laser weapons[J]. Optics and Photonics News, 2009, 20 (2): 14- 21. |
2 |
COOK J R . High-energy laser weapons since the early 1960s[J]. Optical Engineering, 2012, 52 (2): 021007.
doi: 10.1117/1.OE.52.2.021007 |
3 |
WACHS J J , WILSON G T . United States army tactical high-energy laser program[J]. Optical Engineering, 2012, 52 (2): 021009.
doi: 10.1117/1.OE.52.2.021009 |
4 | ELLIS J D.Directed-energy weapons: promise and prospects[R]. Washingtow, DC: Center for a New American Security, 2015. |
5 | ZOHURI B . Introduction to directed energy weapon[M]. Directed-energy beam weapons.Cham: Springer, 2019: 1- 54. |
6 |
KIEL D H . Is this the time for a high-energy laser weapon program?[J]. Optical Engineering, 2012, 52 (2): 021008.
doi: 10.1117/1.OE.52.2.021008 |
7 | TAN Z K, KE X Z.The variance of angle-of-arrival fluctuation of partially coherent Gaussian-Schell model beam propagations in slant atmospheric turbulence[C]//Proc.of the Fiber Optic Sensing & Optical Communications, 2017, 10464. |
8 |
LUSHNIKOV P M , VLADIMIROVA N . Toward defeating diffraction and randomness for laser beam propagation in turbulent atmosphere[J]. JETP Letters, 2018, 108 (9): 571- 576.
doi: 10.1134/S0021364018210026 |
9 | 张鹏飞, 乔春红, 冯晓星, 等. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论[J]. 物理学报, 2017, 66 (24): 127- 134. |
ZHANG P F , QIAO C H , FENG X X , et al. Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere[J]. Acta Physica Sinica, 2017, 66 (24): 127- 134. | |
10 |
WANG L , LIN W , WU C , et al. The steady-state thermal blooming of the high-power laser propagation in the rain[J]. Journal of Electromagnetic Waves and Applications, 2016, 30 (14): 1877- 1884.
doi: 10.1080/09205071.2016.1219276 |
11 |
DING Z L , LI X Q , CAO J Y , et al. Thermal blooming effect of Hermite-Gaussian beams propagating through the atmosphere[J]. Journal of the Optical Society of America A, 2019, 36 (7): 1152- 1160.
doi: 10.1364/JOSAA.36.001152 |
12 |
LIU Y T . Adaptive control in adaptive optics for directed-energy systems[J]. Optical Engineering, 2007, 46 (4): 046601.
doi: 10.1117/1.2724839 |
13 |
TESCH J , GIBSON S . Optimal and adaptive control of aero-optical wavefronts for adaptive optics[J]. Journal of the Optical Society of America A, 2012, 29 (8): 1625- 1638.
doi: 10.1364/JOSAA.29.001625 |
14 | OPPENHEIMER M W , PACHTER M . Adaptive optics for airborne platforms-part 2:controller design[J]. Optics and Laser Technology, 2002, 34 (2): 159- 176. |
15 |
ZHAO H C , WANG X L , ZHOU P , et al. Experimental explorations of the high-order Gaussian mode transformation based on blind-optimization adaptive optics[J]. Optics Communications, 2011, 284 (19): 4654- 4657.
doi: 10.1016/j.optcom.2011.04.055 |
16 | BAUMANN S M, KEENAN C, MARCINIAK M A, et al.Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing[C]//Proc.of the SPIE-the International Society for Optical Engineering, 2014. |
17 |
BOLEY C D , CUTTER K P , FOCHS S N , et al. Interaction of a high-power laser beam with metal sheets[J]. Journal of Applied Physics, 2010, 107 (4): 043106.
doi: 10.1063/1.3284204 |
18 |
MA C , MA Z , GAO L H , et al. Ablation behavior of glass fiber reinforced poly-benzoxazine composites irradiated by high energy continuous-wave laser[J]. Materials Research Express, 2019, 6 (8): 085315.
doi: 10.1088/2053-1591/ab1ef1 |
19 |
CANDAN C , SEYMEN A A , KARATUTLU A , et al. Performance evaluation of fiber-based ballistic composites against laser threats[J]. Optics and Lasers in Engineering, 2019, 121, 54- 60.
doi: 10.1016/j.optlaseng.2019.03.016 |
20 |
LACROIX F , ALLHEILY V , DIENER K , et al. Thermomechanical behavior of aeronautic structural carbon epoxy composite submitted to a laser irradiation[J]. Composite Structures, 2016, 143, 220- 229.
doi: 10.1016/j.compstruct.2016.02.009 |
21 | GUO F, ZHU R Z, WANG A.Damage effect on CMOS detector irradiated by single-pulse laser[C]//Proc.of the SPIE International Society for Optical Engineering, 2013, 8905: 610-614. |
22 | CHEN Q R, ZHOU X F, HAO D L, et al.Nanosecond-laser induced crosstalk of CMOS image sensor[C]//Proc.of the 4th Seminar on Novel Optoelectronic Detection Technology and Application, 2018. |
23 | LU Y, FENG Y S, LING Y S, et al.The mechanism of laser disturbing infrared detector and its intelligent protection[C]//Proc.of the 5th International Symposium on Photoelectronic Detection and Imaging, 2013. |
24 | BURLEY J L.Comparision of high energy laser expected dwell times and probability of kill for mission planning scenarios in actual and standard atmospheres, ADA557011[R]. Ohio: Air Force Institute of Technology, 2012. |
25 | STUPL J , NEUNECK G . Assessment of long range laser weapon engagements:the case of the airborne laser[J]. Science & Global Security, 2010, 18 (1): 1- 60. |
26 | 高小翔.机载激光武器系统关键技术及仿真研究[D].西安:西北工业大学, 2013. |
GAO X X.Airborne laser weapon system key techniques simulation research[D]. Xi'an: Northwestern Polytechnical University, 2013. | |
27 |
王佩, 吕梅柏, 李言俊, 等. 基于HLA的机载激光武器仿真系统设计[J]. 西北工业大学学报, 2011, 29 (2): 198- 204.
doi: 10.3969/j.issn.1000-2758.2011.02.009 |
WANG P , LYU M B , LI Y J , et al. An airborne laser weapon simulation system based on HLA[J]. Journal of Northwestern Polytechnical University, 2011, 29 (2): 198- 204.
doi: 10.3969/j.issn.1000-2758.2011.02.009 |
|
28 | GUNDLACH J . Designing unmanned aircraft systems:a comprehensive approach[M]. Reston, Virginia: AIAA, 2012: 531- 533. |
29 | 张明友, 汪学刚. 雷达系统[M]. 北京: 电子工业出版社, 2013: 112- 114. |
ZHANG M Y , WANG X G . Radar systems[M]. Beijing: Publishing House of Electronics Industry, 2013: 112- 114. | |
30 |
牛晓川, 陈少华, 吴宗一, 等. 协同制导条件下空空导弹中末制导交接班能力[J]. 弹箭与制导学报, 2011, 31 (4): 41- 44.
doi: 10.3969/j.issn.1673-9728.2011.04.013 |
NIU X C , CHEN S H , WU Z Y , et al. Investigation of air-to-air missile's midcourse and terminal guidance handing-off based on cooperative guidance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31 (4): 41- 44.
doi: 10.3969/j.issn.1673-9728.2011.04.013 |
|
31 | 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005. |
FANG Z P , CHEN W C , ZHANG S G . Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005. | |
32 |
欧阳中辉, 刘家祺, 张龙杰, 等. 基于矢量运算的三维真比例导引弹道仿真[J]. 弹箭与制导学报, 2013, 33 (1): 53- 56.
doi: 10.3969/j.issn.1673-9728.2013.01.013 |
OUYANG Z H , LIU J Q , ZHANG L J , et al. The simulation of three-dimensional TPN trajectory based on vector operation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (1): 53- 56.
doi: 10.3969/j.issn.1673-9728.2013.01.013 |
|
33 | 王炜强, 贾晓洪, 韩宇萌, 等. 定向干扰激光的红外成像建模与仿真[J]. 红外与激光工程, 2016, 45 (6): 51- 56. |
WANG W Q , JIA X H , HAN Y M , et al. Infrared imaging modeling and simulation of DIRCM laser[J]. Infrared and Laser Engineering, 2016, 45 (6): 51- 56. | |
34 | PUENT D.Integration of adaptive optics into high energy laser modeling and simulation[D]. Monterey, California: Naval Postgraduate School, 2017. |
35 |
柯熙政, 郭新龙. 大气斜程传输中高阶贝塞尔高斯光束轨道角动量的研究[J]. 红外与激光工程, 2015, 44 (12): 3744- 3749.
doi: 10.3969/j.issn.1007-2276.2015.12.042 |
KE X Z , GUO X L . Orbital angular momentum research of high order Bessel Gaussian beam in a slant atmosphere turbulence[J]. Infrared and Laser Engineering, 2015, 44 (12): 3744- 3749.
doi: 10.3969/j.issn.1007-2276.2015.12.042 |
|
36 | 蒲桃园.高能激光大气传输热晕效应分析[D].成都:电子科技大学, 2010. |
PU T Y.Analysis of high energy laser thermal blooming effect[D]. Chengdu: University of Electronic Science and Technology, 2010. | |
37 |
刘淑英. YAG连续激光对玻璃钢材料的破坏效应研究[J]. 红外与激光工程, 1999, 28 (6): 52- 57.
doi: 10.3969/j.issn.1007-2276.1999.06.011 |
LIU S Y . Research of destructive effect produced by YAG continuous laser acting on fiberglass material[J]. Infrared and Laser Engineering, 1999, 28 (6): 52- 57.
doi: 10.3969/j.issn.1007-2276.1999.06.011 |
|
38 | BARTON D K . Radar system analysis and modeling[M]. Norwood: Artech House, 2005: 387- 388. |
[1] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
[2] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[3] | Pu ZHANG, Huifeng XUE, Shan GAO, Xuan ZUO. Distributed finite-time adaptive cooperative fault-tolerant control for multi-agent systems with integrated actuators faults [J]. Systems Engineering and Electronics, 2022, 44(4): 1220-1229. |
[4] | Bin ZENG, Hongqiang ZHANG, Houpu LI. Research on anti-submarine strategy for unmanned undersea vehicles [J]. Systems Engineering and Electronics, 2022, 44(10): 3174-3181. |
[5] | Zhe LUO, Wanzhen QUAN, Purui ZHANG, Xiaogang YANG. Consensus tracking control for one-side Lipschitz nonlinear multi-agent systems [J]. Systems Engineering and Electronics, 2022, 44(1): 279-284. |
[6] | Jiayi LIU, Shaohua YUE, Gang WANG, Xiaoqiang YAO, Jie ZHANG. Cooperative evolution algorithm of multi-agent system under complex tasks [J]. Systems Engineering and Electronics, 2021, 43(4): 991-1002. |
[7] | Chen LI, Yanyan HUANG, Yongliang ZHANG, Tiande CHEN. Multi-agent decision-making method based on Actor-Critic framework and its application in wargame [J]. Systems Engineering and Electronics, 2021, 43(3): 755-762. |
[8] | Ang GAO, Zhiming DONG, Liang LI, Jinghua SONG, Li DUAN. Parallel priority experience replay mechanism of MADDPG algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 420-433. |
[9] | Pu ZHANG, Huifeng XUE, Shan GAO, Xuan ZUO. Distributed adaptive cooperative tracking control of multi-agent system with weak communication [J]. Systems Engineering and Electronics, 2021, 43(2): 487-498. |
[10] | Ang GAO, Qisheng GUO, Zhiming DONG, Shaoqing YANG. Research on efficiency evaluation method of multi unmanned ground vehicle system based on EAS+MADRL [J]. Systems Engineering and Electronics, 2021, 43(12): 3643-3651. |
[11] | Bo SONG, Wei YE, Xianghui MENG. Review of multi-agent reinforcement learning based dynamic spectrum allocation method [J]. Systems Engineering and Electronics, 2021, 43(11): 3338-3351. |
[12] | Jiayi LIU, Shaohua YUE, Gang WANG, Jie ZHANG, Xiaoqiang YAO. Design of command control model based on MPC-MAS under multi-platform distributed cooperative operation [J]. Systems Engineering and Electronics, 2020, 42(7): 1582-1589. |
[13] | Jiayi LIU, Gang WANG, Jie ZHANG, Chuang WANG, Xituan SONG. Target optimal assignment model based on improved AGD-distributed multi-Agent system [J]. Systems Engineering and Electronics, 2020, 42(4): 863-870. |
[14] | Yan ZHAO, Jianfeng WU, Yupeng GAO. Information fusion method of hypersonic vehicle based on multi-agent navigation [J]. Systems Engineering and Electronics, 2020, 42(2): 405-413. |
[15] | Xiaolong WANG, Haiying LIU, Jingqi WANG. Collaborative navigation of air-ground multi-agent based on hierarchical SLAM [J]. Systems Engineering and Electronics, 2020, 42(1): 166-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||