| 1 | HUANG G Q ,  YUAN Y J ,  WANG X , et al.  Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical and Computer Engineering, 2016, 39 (1): 34- 41. | 
																													
																							| 2 | PAN Y W, PENG H, LI T Y, et al. High-fidelity symbol synchronization for specific emitter identification[C]//Proc.of the 3rd IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2019: 393-398. | 
																													
																							| 3 | ZHANG Z S ,  LONG K P ,  WANG J P .  Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey[J]. IEEE Wireless Communications, 2013, 20 (2): 36- 42. doi: 10.1109/MWC.2013.6507392
 | 
																													
																							| 4 | TALBOT K I ,  DULEY P R ,  HYATT M H .  Specific emitter identification and verification[J]. Technology Review Journal Spring Summer, 2003, 11 (1): 113- 133. | 
																													
																							| 5 | WALENCZYKOWSKA M ,  KAWALEC A .  Type of modulation identification using wavelet transform and neural network[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64 (1): 257- 261. doi: 10.1515/bpasts-2016-0028
 | 
																													
																							| 6 | CAO R ,  CAO J W ,  MEI J P , et al.  Radar emitter identification with bispectrum and hierarchical extreme learning machine[J]. Multimedia Tools and Applications, 2019, 78, 28953- 28970. doi: 10.1007/s11042-018-6134-y
 | 
																													
																							| 7 | 黄健航, 雷迎科.  基于半监督矩形网络的通信电台个体识别[J]. 电子学报, 2019, 47 (1): 1- 8. | 
																													
																							|  | HUANG J H ,  LEI Y K .  Communication radio individual recognition based on semi-supervised rectangular network[J]. Acta Electronica Sinica, 2019, 47 (1): 1- 8. | 
																													
																							| 8 | LI L ,  JI H B ,  JIANG L .  Quadratic time-frequency analysis and sequential recognition for specific emitter identification[J]. IET Signal Processing, 2011, 5 (6): 568- 574. doi: 10.1049/iet-spr.2010.0070
 | 
																													
																							| 9 | IWAMOTO T. Practical identification of specific emitters used in the automatic identification system[C]//Proc.of the IEEE Sensor Signal Processing for Defence, 2015. | 
																													
																							| 10 | SATIJA U ,  TRIVEDI N ,  BISWAL G , et al.  Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics & Security, 2019, 14 (3): 581- 591. | 
																													
																							| 11 | DUDCZYK J ,  KAWALEC A .  Fractal features of specific emitter identification[J]. Acta Physica Polonica, 2013, 124 (3): 406- 409. doi: 10.12693/APhysPolA.124.406
 | 
																													
																							| 12 | ZHANG J W ,  WANG F G ,  DOBRE O A , et al.  Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2016, 11 (6): 1192- 1205. doi: 10.1109/TIFS.2016.2520908
 | 
																													
																							| 13 | LI K ,  ZHANG J Y ,  LEI Y K .  A novel fingerprint feature extraction method for communication radiation source[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37 (1): 351- 359. | 
																													
																							| 14 | DRAGOMIRETSKIY K ,  ZOSSO D .  Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2013, 62 (3): 531- 544. | 
																													
																							| 15 | YUAN Y J ,  HUANG Z T ,  WU H , et al.  Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8 (13): 2404- 2412. doi: 10.1049/iet-com.2013.0865
 | 
																													
																							| 16 | 张鹏强, 谭熊, 余旭初, 等.  基于核半监督判别分析的高光谱影像特征提取[J]. 测绘科学技术学报, 2016, 33 (3): 258- 262, 268. | 
																													
																							|  | ZHANG P Q ,  TAN X ,  YU X C , et al.  Hyperspectral imagery feature extraction based on Kernel semi-supervised discriminant analysis[J]. Journal of Geomatics Science and Technology, 2016, 33 (3): 258- 262, 268. | 
																													
																							| 17 | MA L ,  CRAWFORD M M ,  YANG X Q , et al.  Local-manifold-learning-based graph construction for semi-supervised hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (5): 2832- 2844. doi: 10.1109/TGRS.2014.2365676
 | 
																													
																							| 18 | DORNAIKA F ,  TRABOULSI Y E .  Matrix exponential based semi-supervised discriminant embedding for image classification[J]. Pattern Recognition, 2017, 61, 92- 103. doi: 10.1016/j.patcog.2016.07.029
 | 
																													
																							| 19 | ZHAO Z ,  QI W ,  HAN J , et al.  Semi-supervised classification via discriminative sparse manifold regularization[J]. Signal Processing: Image Communication, 2016, 47, 207- 217. doi: 10.1016/j.image.2016.06.008
 |