Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3533-3541.doi: 10.12305/j.issn.1001-506X.2021.12.15
• Sensors and Signal Processing • Previous Articles Next Articles
Guoling ZHANG1, Chongming WU2,*, Rui LI1, Jie LAI1, Qian XIANG1
Received:
2020-06-28
Online:
2021-11-24
Published:
2021-11-30
Contact:
Chongming WU
CLC Number:
Guoling ZHANG, Chongming WU, Rui LI, Jie LAI, Qian XIANG. HRRP target recognition method based on one-dimensional stacked pooling fusion convolutional autoencoder[J]. Systems Engineering and Electronics, 2021, 43(12): 3533-3541.
Table 1
Network parameters setting"
网络层 | 输入 | 核数 | 核/窗口 | 步长 | 输出 |
C1 | (256×1)×1 | 32 | 3×1 | 1 | (256×1)×32 |
C1 | (256×1)×1 | 32 | 3×1 | 1 | (256×1)×32 |
P1_max | (256×1)×32 | — | 2×1 | 2 | (128×1)×32 |
P1_avg | (256×1)×32 | — | 2×1 | 2 | (128×1)×32 |
P1 | — | — | — | — | (128×1)×64 |
C2 | (128×1)×64 | 48 | 3×1 | 1 | (128×1)×48 |
C2 | (128×1)×48 | 48 | 3×1 | 1 | (128×1)×48 |
P2_max | (128×1)×48 | — | 2×1 | 2 | (64×1)×48 |
P2_avg | (128×1)×48 | — | 2×1 | 2 | (64×1)×48 |
P2 | — | — | — | — | (64×1)×96 |
C3 | (64×1)×96 | 64 | 3×1 | 1 | (64×1)×64 |
C3 | (64×1)×64 | 64 | 3×1 | 1 | (64×1)×64 |
P3_max | (64×1)×64 | — | 2×1 | 2 | (32×1)×64 |
P3_avg | (64×1)×64 | — | 2×1 | 2 | (32×1)×64 |
P3 | — | — | — | — | (32×1)×128 |
Flatten | (32×1)×128 | — | — | — | 4 096×1 |
全连接 | 4 096×1 | — | — | — | 400×1 |
Softmax | 400×1 | — | — | — | 5×1 |
1 |
LIAO K , SI J X , ZHU F Q , et al. Radar HRRP target recognition based on concatenated deep neural networks[J]. IEEE Access, 2018, 6, 29211- 29218.
doi: 10.1109/ACCESS.2018.2842687 |
2 |
LI L , LIU Z , LI T . Radar high resolution range profile recognition via multi-SV method[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 879- 889.
doi: 10.21629/JSEE.2017.05.07 |
3 |
LIU J , FANG N , XIE Y J , et al. Scale-space theory-based mutil-scale feature for aircraft classification using HRRP[J]. Electronics Letters, 2016, 52 (6): 475- 477.
doi: 10.1049/el.2015.3583 |
4 | 李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40 (1): 173- 180. |
LI L , LIU Z . Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics & Information Technology, 2018, 40 (1): 173- 180. | |
5 |
ZHOU D Y . Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126, 52- 64.
doi: 10.1016/j.sigpro.2015.12.006 |
6 |
GUO Y , XIAO H T , KAN Y Z , et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12 (2): 188- 197.
doi: 10.1049/iet-spr.2016.0625 |
7 |
PAN M , JIANG J , KONG Q P , et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098 |
8 | 杨予昊, 孙晶明, 虞盛康, 等. 基于卷积神经网络的高分辨距离像目标识别[J]. 现代雷达, 2017, 39 (12): 28- 32. |
YANG Y H , SUN J M , YU S K , et al. High resolution range profile target recognition based on convolutional neural network[J]. Modern Radar, 2017, 39 (12): 28- 32. | |
9 |
FENG B , CHEN B , LIU H W . Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61, 379- 393.
doi: 10.1016/j.patcog.2016.08.012 |
10 | ZHAO F X , LIU Y X , HUO K , et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18 (1): 173- 187. |
11 |
CHEN M , SHI X B , ZHANG Y , et al. Deep features learning for medical image analysis with convolutional autoencoder neural network[J]. IEEE Trans.on Big Data, 2017,
doi: 10.1109/TBDATA.2017.2717439 |
12 | HUANG H , HU X T , ZHAO Y , et al. Modeling task fMRI data via deep convolutional autoencoder[J]. IEEE Trans.on Medical Imaging, 2017, 37 (7): 1551- 1561. |
13 | LUO W , LI J , YANG J , et al. Convolutional sparse autoencoders for image classification[J]. IEEE Trans.on Neural Networks, 2018, 29 (7): 3289- 3294. |
14 |
DU B , XIONG W , WU J , et al. Stacked convolutional denoising auto-encoders for feature representation[J]. IEEE Trans.on Cybernetics, 2017, 47 (4): 1017- 1027.
doi: 10.1109/TCYB.2016.2536638 |
15 | LUO L, XIONG Y, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[EB/OL]. [2020-07-24]. https://arxiv.org/abs/1902.09843?context=cs.LG. |
16 | HOU B R , YAN R Q . Convolutional auto-encoder model for finger-vein verification[J]. IEEE Trans.on Instrumentation & Measurement, 2020, 69 (5): 2067- 2074. |
17 | 严国萍, 陈禹, 李雨冲, 等. 基于一维堆叠卷积自编码器的分布式应变裂缝检测[J]. 计算机系统应用, 2020, 29 (1): 144- 150. |
YAN G P , CHEN Y , LI Y C , et al. Distributed strain crack detection based on one-dimensional stacked convolutional autoencoder[J]. Computer Systems & Applications, 2020, 29 (1): 144- 150. | |
18 | 张海利, 王普, 高学金, 等. 基于批次图像化的卷积自编码故障监测方法[J]. 控制与决策, 2021, 36 (6): 1361- 1367. |
ZHANG H L , WANG P , GAO X J , et al. Fault detection of batch image-based convolutional autoencoder[J]. Control and Decision, 2021, 36 (6): 1361- 1367. | |
19 |
罗畅, 王洁, 王鹏飞, 等. 卷积自编码器中粗粒度池化特征提取研究[J]. 电子学报, 2017, 45 (10): 2390- 2401.
doi: 10.3969/j.issn.0372-2112.2017.10.012 |
LUO C , WANG J , WANG P F , et al. Coarse-grained pooled features learning in convolutional autoencoders[J]. Acta Electronica Sinica, 2017, 45 (10): 2390- 2401.
doi: 10.3969/j.issn.0372-2112.2017.10.012 |
|
20 |
WAHLBECK K , TUUNAINEN A , AHOKAS A , et al. Dropout rates in randomised antipsychotic drug triais[J]. Psychopharmacology, 2001, 155 (3): 230- 233.
doi: 10.1007/s002130100711 |
21 | BENGIO Y , LAMBLIN P , DAN P , et al. Greedy layer-wise training of deep networks[J]. Proceedings of the Advances in Neural Information Processing Systems, 2006, 19, 153- 160. |
22 | VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408. |
23 | LE Q V, NGIAM I, COATES A, et al. On optimization methods for deep learning[C]//Proc. of the 28th International Conference on Machine Learning, 2011. |
24 | 张国令, 王晓丹, 李睿, 等. 基于栈式降噪稀疏自编码器的极限学习机[J]. 计算机工程, 2020, 46 (9): 61- 67. |
ZHANG G L , WANG X D , LI R , et al. Stacked denoising sparse autoencoder based extreme learning machine[J]. Computer Engineering, 2020, 46 (9): 61- 67. |
[1] | Zexuan MA, Jin LI, Yanli LU, Chen CHEN. Network intrusion detection method based on WaveNet and BiGRU [J]. Systems Engineering and Electronics, 2022, 44(8): 2652-2660. |
[2] | Haoliang LI, Siwei CHEN, Xuesong WANG. Study on characterization of sea corner reflectors in polarimetric rotation domain [J]. Systems Engineering and Electronics, 2022, 44(7): 2065-2073. |
[3] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[4] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[5] | Caiyun WANG, Chen YAO, Yida WU, Jianing WANG, Xiaofei LI, Panpan HUANG. Radar target recognition based on improved Dijkstra algorithm with time-frequency domain filtering [J]. Systems Engineering and Electronics, 2022, 44(10): 3090-3095. |
[6] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[7] | Feng ZHU, Qianqian JIANG, Chuan LIN, Xiao YANG. Typical wideband EMI identification based on support vector machine [J]. Systems Engineering and Electronics, 2021, 43(9): 2400-2406. |
[8] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
[9] | Hao CHEN, Jun'an YANG, Hui LIU. Communication transmitter individual identification based on deep residual adaptation network [J]. Systems Engineering and Electronics, 2021, 43(3): 603-609. |
[10] | Chaoying HUO, Hua YAN, Xuejian FENG, Hongcheng YIN, Xiaoyu XING, Jinwen LU. Correlation research between deep features of HRRP sparse auto-encoder and scattering center features [J]. Systems Engineering and Electronics, 2021, 43(11): 3040-3053. |
[11] | Liang ZHANG, Wei YANG, Weijie LI, Xiaoqi YANG, Yongxiang LIU. Classification of radar clutter amplitude statistical model based on complex-valued convolutional-ResNet [J]. Systems Engineering and Electronics, 2021, 43(11): 3086-3097. |
[12] | Ruochen ZHAO, Jingdong WANG, Siyu LIN, Dongze GU. Small building detection algorithm based on convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(11): 3098-3106. |
[13] | Yifan ZHANG, Shuanghui ZHANG, Yongxiang LIU, Feng JING. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network [J]. Systems Engineering and Electronics, 2021, 43(10): 2775-2781. |
[14] | Wang LU, Yasheng ZHANG, Can XU, Caiyong LIN. HRRP target recognition method based on bispectrum-spectrogram feature and deep convolutional neural network [J]. Systems Engineering and Electronics, 2020, 42(8): 1703-1709. |
[15] | Tianqi ZHANG, Congcong FAN, Shengqi YU, Jiangen ZHAO. Blind recognition of orthogonal and non-orthogonal space-time block codes based on JADE and feature extraction [J]. Systems Engineering and Electronics, 2020, 42(4): 933-939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||