Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (2): 356-364.doi: 10.3969/j.issn.1001-506X.2020.02.14
Previous Articles Next Articles
Yan LIU1,2(), Chunliang CHEN1(
), Weilong CHEN3(
), Yiming GUO1(
)
Received:
2019-04-02
Online:
2020-02-01
Published:
2020-01-23
CLC Number:
Yan LIU, Chunliang CHEN, Weilong CHEN, Yiming GUO. Multi-objective dynamic scheduling of fixed-point repairing tasksbased on Pareto improved VNS-MMAS[J]. Systems Engineering and Electronics, 2020, 42(2): 356-364.
Table 1
Information of equipment to be repaired"
i | ti/min | δi1 | δi2 | Tiup/min | | i | ti/min | δi1 | δi2 | Tiup/min | ||||||
1 | 100 | 0.48 | 0.37 | 190 | 30 | 20 | 15 | 11 | 207 | 0.55 | 0.41 | 360 | 35 | 25 | 10 | |
2 | 100 | 0.57 | 0.42 | 190 | 28 | 18 | 12 | 12 | 224 | 0.67 | 0.52 | 400 | 30 | 20 | 10 | |
3 | 100 | 0.82 | 0.55 | 190 | 32 | 25 | 0 | 13 | 263 | 0.48 | 0.37 | 400 | 35 | 25 | 18 | |
4 | 100 | 0.67 | 0.52 | 210 | 35 | 0 | 12 | 14 | 282 | 0.67 | 0.52 | 410 | 28 | 30 | 0 | |
5 | 100 | 0.74 | 0.66 | 210 | 35 | 25 | 18 | 15 | 325 | 0.82 | 0.55 | 450 | 40 | 30 | 14 | |
6 | 128 | 0.67 | 0.58 | 220 | 0 | 30 | 14 | 16 | 341 | 0.67 | 0.52 | 450 | 35 | 32 | 18 | |
7 | 140 | 0.68 | 0.42 | 250 | 40 | 30 | 16 | 17 | 387 | 0.74 | 0.66 | 450 | 28 | 28 | 13 | |
8 | 156 | 0.59 | 0.39 | 280 | 0 | 32 | 0 | 18 | 413 | 0.52 | 0.38 | 480 | 0 | 20 | 10 | |
9 | 168 | 0.55 | 0.41 | 320 | 36 | 28 | 10 | 19 | 433 | 0.48 | 0.32 | 480 | 30 | 0 | 16 | |
10 | 182 | 0.44 | 0.36 | 330 | 42 | 0 | 13 | 20 | 456 | 0.59 | 0.39 | 480 | 35 | 25 | 10 |
Table 2
Scheduling planning results"
调度时刻 | 参与调度装备 | 各定点修理组的任务序列及恢复状态 | 定点修理数据 | ||||||||||
组1 | 组2 | 组3 | 组4 | 组5 | 组6 | 组7 | 组8 | F1 | F2 | F3 | |||
100 | 1, 2, 3, 4, 5 | 3-2 | 5-1 | 4 | 3-1 | 2 | 5 | 4-1 | 5-2 | 5 | 3.02 | 1 471 | |
128 | 1, 2, 6 | 3-2 | 5-1 | 4 | 3-6 | 2 | 5-1 | 4-6 | 5-2-1 | 6 | 3.69 | 1 761 | |
140 | 1, 2, 6, 7 | 3-7 | 5-2 | 4-1 | 3-7 | 2-1 | 5-6 | 4-6-2 | 5-7-1 | 7 | 4.28 | 1 925 | |
156 | 1, 2, 6, 7, 8 | 3-7 | 5-2 | 4-1 | 3-7-8 | 2-1 | 5-6 | 4-6-2 | 5-7-1 | 8 | 4.87 | 2 151 | |
168 | 1, 2, 8, 9 | 3-7-9 | 5-2 | 4-1 | 3-7-8 | 2-1 | 5-6-9 | 4-6-2-9 | 5-7-1 | 9 | 5.42 | 2 335 | |
182 | 1, 2, 8, 9, 10 | 3-7-10 | 5-2-9 | 4-1 | 3-7-8 | 2-1 | 5-6-9 | 4-6-2-9 | 5-7-10-1 | 10 | 6 | 2 486 | |
207 | 1, 8, 9, 10, 11 | 3-7-10 | 5-2-9 | 4-1-11 | 3-7-8 | 2-1-11 | 5-6-9 | 4-6-2-9-11 | 5-7-10-1 | 11 | 6.41 | 2 595 | |
224 | 9, 10, 11, 12 | 3-7-10-11 | 5-2-9 | 4-1-12 | 3-7-8-12 | 2-1-11 | 5-6-9 | 4-6-2-9-12 | 5-7-10-1-11 | 12 | 7.08 | 2 709 | |
263 | 11, 12, 13 | 3-7-10-11 | 5-2-9-13 | 4-1-12 | 3-7-8-12 | 2-1-11 | 5-6-9-13 | 4-6-2-9-12-13 | 5-7-10-1-11 | 13 | 7.45 | 2 788 | |
282 | 11, 12, 13, 14 | 3-7-10-11 | 5-2-9-14 | 4-1-12-13 | 3-7-8-12 | 2-1-11-14 | 5-6-9-13 | 4-6-2-9-12-13 | 5-7-10-1-11 | 14 | 8.12 | 2 815 | |
325 | 11, 12, 13, 14, 15 | 3-7-10-11-15 | 5-2-9-14 | 4-1-12-13 | 3-7-8-12-15 | 2-1-11-14 | 5-6-9-13 | 4-6-2-9-12-13 | 5-7-10-1-11-15 | 15 | 8.64 | 2 843 | |
341 | 14, 15, 16 | 3-7-10-11-16 | 5-2-9-14-15 | 4-1-12-13 | 3-7-8-12-15 | 2-1-11-14 | 5-6-9-13-16 | 4-6-2-9-12-13-16 | 5-7-10-1-11-15 | 16 | 9.16 | 2 839 | |
387 | 15, 16, 17 | 3-7-10-11-16 | 5-2-9-14-15 | 4-1-12-13 | 3-7-8-12-15 | 2-1-11-14 | 5-6-9-13-16 | 4-6-2-9-12-13-16 | 5-7-10-1-11-15 | 16 | 9.16 | 2 839 | |
413 | 17, 18 | 3-7-10-11-16 | 5-2-9-14-15 | 4-1-12-13 | 3-7-8-12-15-18 | 2-1-11-14 | 5-6-9-13-16 | 4-6-2-9-12-13-16-18 | 5-7-10-1-11-15 | 17 | 9.68 | 2 886 | |
433 | 17, 19 | 3-7-10-11-16 | 5-2-9-14-15 | 4-1-12-13 | 3-7-8-12-15-18 | 2-1-11-14 | 5-6-9-13-16 | 4-6-2-9-12-13-16-18 | 5-7-10-1-11-15 | 17 | 9.68 | 2 886 | |
456 | 17, 19, 20 | 3-7-10-11-16 | 5-2-9-14-15 | 4-1-12-13 | 3-7-8-12-15-18 | 2-1-11-14 | 5-6-9-13-16 | 4-6-2-9-12-13-16-18 | 5-7-10-1-11-15 | 17 | 9.68 | 2 886 |
1 |
昝翔, 陈春良, 张仕新, 等. 多约束条件下战时装备维修任务分配方法[J]. 兵工学报, 2017, 38 (8): 1603- 1609.
doi: 10.3969/j.issn.1000-1093.2017.08.019 |
ZAN X , CHEN C L , ZHANG S X , et al. Task allocation method for wartime equipment maintenance under multiple constraint conditions[J]. Acta Armamentarii, 2017, 38 (8): 1603- 1609.
doi: 10.3969/j.issn.1000-1093.2017.08.019 |
|
2 | 陈伟龙, 陈春良, 史宪铭, 等. 基于变体GA的进攻作战抢修任务动态调度[J]. 系统工程与电子技术, 2017, 39 (3): 577- 583. |
CHEN W L , CHEN C L , SHI X M , et al. Dynamic scheduling of battlefield rush-repair tasks in the offensive operation based on variant GA[J]. Systems Engineering and Electronic, 2017, 39 (3): 577- 583. | |
3 |
朱昱, 宋建社, 王正元. 一种基于最大保障时间的战时装备维修任务调度[J]. 系统工程与电子技术, 2007, 29 (11): 1900- 1903.
doi: 10.3321/j.issn:1001-506x.2007.11.028 |
ZHU Y , SONG J S , WANG Z Y . Scheduling model of the battle equipment maintenance task based on the most support time[J]. Systems Engineering and Electronic, 2007, 29 (11): 1900- 1903.
doi: 10.3321/j.issn:1001-506x.2007.11.028 |
|
4 |
陈伟龙, 陈春良, 陈康柱, 等. 考虑不确定性的进攻作战抢修任务动态调度[J]. 兵工学报, 2017, 38 (5): 1011- 1019.
doi: 10.3969/j.issn.1000-1093.2017.05.022 |
CHEN W L , CHEN C L , CHEN K Z , et al. Dynamic scheduling of battlefield rush-repair tasks under uncertainty in offensive operation[J]. Acta Armamentarii, 2017, 38 (5): 1011- 1019.
doi: 10.3969/j.issn.1000-1093.2017.05.022 |
|
5 |
DONG R Y , WANG S S , WANG G Y , et al. Hybrid optimization algorithm based on wolf pack search and local search for solving traveling salesman problem[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24 (1): 41- 47.
doi: 10.1007/s12204-019-2039-9 |
6 |
YANG J Y , DING R F , ZHANG Y , et al. An improved ant colony optimization (I-ACO) method for the quasi travelling salesman problem (quasi-TSP)[J]. International Journal of Geographical Information Science, 2015, 29 (9): 1534- 1551.
doi: 10.1080/13658816.2015.1013960 |
7 | ABDALLAH A M F M , ESSAM D L , SARKER R A . On solving periodic re-optimization dynamic vehicle routing problems[J]. Applied Soft Computing, 2017, 55 (6): 1- 12. |
8 | CHEN S F , CHEN R , WANG G G , et al. An adaptive large neighborhood search heuristic for dynamic vehicle routing problems[J]. Computers and Electrical Engineering, 2018, 67 (4): 596- 607. |
9 |
ULMER M W , SOEFFKER N , MATTFELD D C . Value function approximation for dynamic multi-period vehicle routing[J]. European Journal of Operational Research, 2018, 269 (3): 883- 899.
doi: 10.1016/j.ejor.2018.02.038 |
10 | JIA Y , LI J H . Scheduling rules based on gene expression pro gramming for resource-constrained project scheduling problem[J]. Journal of Donghua University (English Edition), 2015, 32 (1): 91- 96. |
11 |
ZAMANI R . A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2013, 229 (2): 552- 559.
doi: 10.1016/j.ejor.2013.03.005 |
12 |
AQEL G A , LI X Y , GAO L . A modified iterated greedy algorithm for flexible job shop scheduling problem[J]. Chinese Journal of Mechanical Engineering, 2019, 32 (1): 21- 32.
doi: 10.1186/s10033-019-0337-7 |
13 |
PENG J G , LIU M Z , ZHANG X , et al. Hybrid heuristic algorithm for multi-objective scheduling problem[J]. Journal of Systems Engineering and Electronics, 2019, 30 (2): 327- 342.
doi: 10.21629/JSEE.2019.02.12 |
14 |
LI X , GAO L . An effective hybrid genetic algorithm and Tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics, 2016, 174, 93- 110.
doi: 10.1016/j.ijpe.2016.01.016 |
15 |
陈春良, 昝翔, 张仕新, 等. 基于改进MMAS的装备维修任务路径规划方法[J]. 系统工程与电子技术, 2017, 39 (12): 2716- 2720.
doi: 10.3969/j.issn.1001-506X.2017.12.13 |
CHEN C L , ZAN X , ZHANG S X , et al. Routing plan method for equipment maintenance task based on improved MMAS[J]. Systems Engineering and Electronic, 2017, 39 (12): 2716- 2720.
doi: 10.3969/j.issn.1001-506X.2017.12.13 |
|
16 | MIR J S S , ALI D M . Multigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed deposit[J]. International Journal of Sediment Research, 2019, 33 (2): 262- 270. |
17 |
AMIN S , MOJTABA B , HOSSEIN S . Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm[J]. Journal of Central South University, 2017, 24, 829- 839.
doi: 10.1007/s11771-017-3485-x |
18 |
KALAYCI C B , KAYA C . An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery[J]. Expert Systems with Applications, 2016, 66, 163- 175.
doi: 10.1016/j.eswa.2016.09.017 |
19 |
DENG Y , ZHU W H , LI H W , et al. Multi-type ant system algorithm for the time dependent vehicle routing problem with time windows[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 625- 638.
doi: 10.21629/JSEE.2018.03.20 |
20 |
SUJAREE K , KITJARUWANKUL S , BOOONAMNAJ P , et al. Transmembrane helix assembly by max-min ant system algorithm[J]. Chemical Biology and Drug Design, 2015, 86 (6): 1360- 1370.
doi: 10.1111/cbdd.12600 |
21 |
FAN C L , FU Q , LONG G Z , et al. Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism[J]. Journal of Systems Engineering and Electronics, 2018, 29 (2): 405- 414.
doi: 10.21629/JSEE.2018.02.20 |
[1] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[2] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[3] | Hongyao LI, Xiaoqiang LI, Xinzhong HAN, Xueli XIE, Jianxiang XI. Cooperative object detection and recognition algorithm for multiple UAVs based on decision fusion [J]. Systems Engineering and Electronics, 2022, 44(3): 746-754. |
[4] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[5] | Hanyang WANG, Liang CHEN, Hai XU, Jingbo BAI. UAV online trajectory planning based on MOEA/D-ARMS [J]. Systems Engineering and Electronics, 2022, 44(11): 3505-3514. |
[6] | Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage [J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893. |
[7] | Bin ZENG, Quanxian ZHANG, Houpu LI. Optimal scheduling for cooperative support chain of logistics and equipment under uncertainty [J]. Systems Engineering and Electronics, 2021, 43(5): 1277-1286. |
[8] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
[9] | Chunming TIAN, An YANG, Le YE, Jianxing LI, Yuchen HE. End-to-end antenna optimization based on Bayesian optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3413-3419. |
[10] | Lei LAI, Dewei WU, Kun ZOU, Kun HAN, Hailin LI. Three dimensional route planning of UAV based on the multi-criterion interactive membrane evolutionary algorithm [J]. Systems Engineering and Electronics, 2021, 43(1): 138-146. |
[11] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
[12] | Qingguo LIU, Xinxue LIU, Jian WU, Yaxiong LI, Hao CHEN. Optimization of fire distribution for multiple SGSW based on improved NSGA-Ⅲ [J]. Systems Engineering and Electronics, 2020, 42(9): 1995-2002. |
[13] | Yadong WANG, Quan SHI, Wei XIA, Cai CHEN. Structure optimization of spare parts supply network based on hyper heuristic algorithm [J]. Systems Engineering and Electronics, 2020, 42(3): 620-629. |
[14] | Zhifei XI, An XU, Yingxin KOU, Zhanwu LI, Aiwu YANG. Decision process of multi-aircraft cooperative air combat maneuver [J]. Systems Engineering and Electronics, 2020, 42(2): 381-389. |
[15] | Chunshan DING. Survey on progress and prospect of sensor management [J]. Systems Engineering and Electronics, 2020, 42(12): 2761-2770. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||