Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (7): 2010-2021.doi: 10.12305/j.issn.1001-506X.2023.07.11
• Sensors and Signal Processing • Previous Articles Next Articles
Husheng WANG, Baixiao CHEN, Qingzhi YE
Received:
2021-12-13
Online:
2023-06-30
Published:
2023-07-11
Contact:
Baixiao CHEN
CLC Number:
Husheng WANG, Baixiao CHEN, Qingzhi YE. Research on anti-chaff jamming method based on measured data[J]. Systems Engineering and Electronics, 2023, 45(7): 2010-2021.
Table 1
Main features of the first chaff projectile's diffusion"
类别 | 帧号 | 中心点距离/km | 中心点速度/(m/s) | 占据距离单元数 | 占据多普勒通道数 | 过CFAR门限点数 |
目标 | 917 | 21.31 | 2.43 | 9 | 22 | 140 |
941 | 21.34 | 2.46 | 13 | 24 | 124 | |
972 | 21.32 | 2.53 | 12 | 23 | 138 | |
1 000 | 21.29 | 2.51 | 13 | 23 | 172 | |
箔条1 | 917 | 21.28 | -1.72 | 7 | 25 | 32 |
941 | 21.32 | -1.14 | 14 | 47 | 210 | |
972 | 21.24 | -0.62 | 15 | 42 | 309 | |
1 000 | 21.23 | -0.84 | 16 | 48 | 423 |
Table 2
Main features of the second chaff projectile's diffusion"
类别 | 帧号 | 中心点距离/km | 中心点速度/(m/s) | 占据距离单元数 | 占据多普勒通道数 | 过CFAR门限点数 |
目标 | 1 426 | 20.69 | 4.21 | 3 | 12 | 43 |
1 527 | 20.44 | 4.58 | 15 | 14 | 104 | |
3 812 | 17.11 | 5.17 | 17 | 26 | 254 | |
5 428 | 14.62 | 5.83 | 31 | 25 | 134 | |
箔条1 | 1 426 | 20.65 | 0.26 | 21 | 36 | 307 |
1 527 | 20.41 | 0.48 | 18 | 31 | 177 | |
3 812 | 17.21 | 2.15 | 29 | 45 | 454 | |
5 428 | 14.86 | 2.38 | 39 | 54 | 620 | |
箔条2 | 1 426 | 21.14 | 0.48 | 27 | 15 | 48 |
1 527 | 20.84 | 0.55 | 28 | 18 | 94 | |
3 812 | 17.68 | 1.65 | 33 | 27 | 375 | |
5 428 | 15.32 | 2.08 | 45 | 51 | 466 |
Table 3
Frequency distribution characteristics of chaff interference peak's adjoin range cell"
类别 | 帧号 | 矩峰度 | 偏度和 | 频偏方差 | 3 dB宽度方差 |
目标 | 917 | 4.58 | 0.76 | 0.00 | 0.00 |
941 | 4.41 | 2.08 | 0.20 | 0.20 | |
1 426 | 4.70 | 3.96 | 1.30 | 0.50 | |
1 527 | 4.65 | 2.35 | 0.00 | 0.80 | |
箔条1 | 917 | 5.01 | 10.01 | 96.70 | 39.30 |
941 | 3.25 | 5.21 | 23.00 | 8.30 | |
箔条2 | 1 426 | 4.29 | 4.38 | 14.30 | 1.30 |
1 527 | 3.70 | 3.49 | 13.70 | 0.20 |
1 | 尚炜, 陈伯孝, 蒋丽凤. 基于频谱展宽效应的一种抗箔条方法[J]. 制导与引信, 2006, 27 (3): 5-9, 24 |
SHANG W , CHEN B X , JIANG L F . An anti-chaff jamming method based on the effect of spectral expansion[J]. Guidance & Fuze, 2006, 27 (3): 5-9, 24 | |
2 | 陈静. 雷达箔条干扰原理[M]. 北京: 国防工业出版社, 2007. |
CHEN J . Principles of radar chaff jamming[M]. Beijing: National Defense Industry Publishing House, 2007. | |
3 | 李伟, 贾惠波, 顾启泰. 识别箔条干扰的一种实用方法[J]. 现代雷达, 2000, 22 (3): 37- 40. |
LI W , JIA H B , GU Q T . A practical method against chaff jamming for the radar[J]. Modern Radar, 2000, 22 (3): 37- 40. | |
4 | ZAK J, VACH M, DVORACEK F. Advanced chaff usage in modern EW[C]//Proc. of the IEEE Radar Methods and Systems Workshop, 2016: 56-59. |
5 | GILLES R . Chaff and flare overview[M]. London: BAE Systems, 2010. |
6 | ZHU G Q, MAN L, CHEN Y, et al. Approach of electromagnetic modeling for chaff clouds formed by exploding[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. |
7 | ZAK J, GREGOR L, DVORACEK F, et al. Measurement of CHAFF RCS[C]//Proc. of the IEEE 19th International Radar Symposium, 2018: 1-7. |
8 | ZUO Y C, GUO L X, XIAO D H. The near-field scattering of chaff cloud[C]//Proc. of the IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2018. |
9 | 马贤杰, 马榜, 李石川, 等. 直升机载箔条弹干扰效能分析[J]. 航天电子对抗, 2018, 34 (6): 17- 22. |
MA X J , MA B , LI S C , et al. Analysis of interference effectiveness of helicopter-borne chaff bombs[J]. Aerospace Electronic Warfare, 2018, 34 (6): 17- 22. | |
10 | GUO L X, ZUO Y C. Investigation on the electromagnetic scattering from the chaff cloud in airflow with VRT[C]//Proc. of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 2020. |
11 | YIN C, BO Y. An improved model for computing the scattering amplitude coefficient of the chaff cloud[C]//Proc. of the IEEE Workshop on Advanced Research and Technology in Industry Applications, 2014: 1371-1374. |
12 | ZHOU Z Y, LI J L, LIANG X X, et al. Polarization and frequency spectra characteristics of chaff cloud clutter signals[C]// Proc. of the IEEE International Conference on Computational Electromagnetics, 2019. |
13 | ZHANG L, WU Z. Simulation of full-polarization electromagnetic back-scattering characteristics of large number of high-density chaff clouds[C]//Proc. of the IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2019. |
14 | CUI G, SHI L F, MA J, et al. Study on chaff diffusion and polarization stratification[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. |
15 | 全斯农, 范晖, 代大海, 等. 一种基于精细极化目标分解的舰船箔条云识别方法[J]. 雷达学报, 2021, 10 (1): 61. |
QUAN S N , FAN H , DAI D H , et al. Recognition of ships and chaff clouds based on sophisticated polarimetric target decomposition[J]. Journal of Radars, 2021, 10 (1): 61. | |
16 |
李尚生, 付哲泉. 关于制导雷达目标识别抗箔条干扰仿真研究[J]. 计算机仿真, 2016, (5): 19- 22.
doi: 10.3969/j.issn.1006-9348.2016.05.005 |
LI S S , FU Z Q . Anti-chaff jamming method of target recognition for guidance radar based on frequency characteristics[J]. Computer Integrated Manufacturing, 2016, (5): 19- 22.
doi: 10.3969/j.issn.1006-9348.2016.05.005 |
|
17 | 李永祯, 刘业民, 庞晨, 等. 基于分层极化特性的箔条云识别方法研究[J]. 系统工程与电子技术, 2021, 43 (8): 2099- 2107. |
LI Y Z , LIU Y M , PANG C . Study on chaff clouds recognition method based on layered polarization characteristics[J]. Systems Engineering and Electronics, 2021, 43 (8): 2099- 2107. | |
18 | LEE H, KIM S. Fuzzy decision tree based Gentle Boost algorithm for detecting chaff echo in weather radar data[C]//Proc. of the IEEE 7th Joint International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems, 2014: 1443-1448. |
19 | ZHANG L F, ZHEN S. Dynamic diffusion modeling and scattering characteristic of large number chaff clouds[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2019. |
20 | LI R, HAO X, BAI S. The micro-Doppler features extraction of experimental data of chaff cloud scatter dispersion based on empirical mode decomposition[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
21 | 赵海波, 胡光锐. 基于自适应联合时频处理的抗箔条干扰技术[J]. 上海交通大学学报, 2008, 42 (7): 1211- 1216. |
ZHAO H B , HU G R . Anti-cloud jamming method based on adaptive joint time-frequency processing[J]. Journal of Shanghai Jiaotong University, 2008, 42 (7): 1211- 1216. | |
22 | 舒欣, 沈福民. 时频分析技术在抑制箔条干扰中的应用[J]. 西安电子科技大学学报, 2001, 28 (5): 676- 680. |
SHU X , SHEN F M . The application of the time-frequency analysis[J]. Journal of Xidian University, 2001, 28 (5): 676- 680. | |
23 | LIU Y M , XING S Q , LIU Y C , et al. Maximum likelihood angle estimation of target in the presence of chaff centroid jamming[J]. IEEE Access, 2018, 6, 74416- 74428. |
24 | 刘业民, 邢世其, 李永祯, 等. 基于极化单脉冲雷达的角度估计方法[J]. 系统工程与电子技术, 2018, 40 (8): 50- 56. |
LIU Y M , XING S Q , LI Y Z , et al. Method for angle estimating based on polarization monopulse radar[J]. Systems Engineering and Electronics, 2018, 40 (8): 50- 56. | |
25 | 李金梁, 来庆福, 李永祯, 等. 基于极化对比增强的导引头抗箔条算法[J]. 系统工程与电子技术, 2011, 33 (2): 268- 271. |
LI J L , LAI Q F , LI Y Z , et al. Anti-chaff algorithm for seekers based on polarimetric contrast enhancement[J]. Systems Engineering and Electronics, 2011, 33 (2): 268- 271. | |
26 | ZUO Y C, GUO L X, LIU W. A scattering evaluation method of chaff cloud based on VRT and SVM[C]//Proc. of the IEEE Photonics & Electromagnetics Research Symposium-Fall, 2019: 1105-1108. |
27 | KAYDOK U. Chaff discrimination using convolutional neural networks and range profile data[C]//Proc. of the IEEE International Radar Conference, 2020: 373-377. |
28 | 刘世敏. 箔条干扰的特征及其实测数据分析[D]. 西安: 西安电子科技大学, 2009: 23-44. |
LIU S M. Characteristics of chaff interference and analysis of actual data[D]. Xi'an: Xidian University, 2009: 23-44. | |
29 | 刘博, 常文革. 反舰宽带相参雷达的一种抗箔条干扰方法[J]. 系统工程与电子技术, 2014, 34 (3): 38- 44. |
LIU B , CHANG W G . Effective anti-chaff jamming method for anti-ship wideband coherent radar[J]. Systems Engineering and Electronics, 2014, 34 (3): 38- 44. | |
30 | 曹司磊, 曾维贵, 刘明刚. 基于区域判别的抗质心式箔条干扰方法[J]. 兵工自动化, 2017, (6): 70- 74. |
CAO S L , ZENG W G , LIU M G . Centroid-chaff jamming confrontation based on region discrimination[J]. Ordnance Industry Automation, 2017, (6): 70- 74. | |
31 | 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012. |
CHEN B X . Modern radar system analysis and design[M]. Xi'an: Xidian University Press, 2012. | |
32 | WINKLER V. Range Doppler detection for automotive FMCW radars[C]//Proc. of the IEEE European Radar Conference, 2007: 166-169. |
33 | FUKUNAGA K , HOSTETLER L D . The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Trans.on Information, 1975, 21 (1): 32- 40. |
34 | CHENG Y Z . Mean shift, mode seeking, and clustering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1995, 17 (8): 790- 799. |
35 | 周芳芳, 樊晓平, 叶榛. 均值漂移算法的研究与应用[J]. 控制与决策, 2007, 22 (8): 841- 847. |
ZHOU F F , FAN X P , YE Z . Mean shift research and applications[J]. Control and Decision, 2007, 22 (8): 841- 847. | |
36 | JOANES D N , GILL C A . Comparing measures of sample skewness and kurtosis[J]. Journal of the Royal Statistical Society, 2010, 47 (1): 183- 189. |
[1] | Wenbo LIU, Yirong YAO, Gong ZHANG, Wen HU. Concept, application, and research progress of hyperdimensional computing [J]. Systems Engineering and Electronics, 2023, 45(7): 1938-1956. |
[2] | Fan YANG, Ping MA, Wei LI, Ming YANG. Intelligent ranking evaluation method of simulation models based on siamese network [J]. Systems Engineering and Electronics, 2023, 45(7): 2060-2068. |
[3] | Zhehao WANG, Tao JIAN, Xiaodong HUANG, Haipeng WANG, Yu LIU. HRRP recognition method for sea surface targets based on angular domain feature PSO [J]. Systems Engineering and Electronics, 2023, 45(6): 1642-1650. |
[4] | Hanyi HUANG, Shiyou HU, Shenglong GUO, Shanjun LI, Qin SHU. Sea surface micro-moving target recognition based on sparse decomposition [J]. Systems Engineering and Electronics, 2023, 45(4): 1016-1023. |
[5] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(3): 708-716. |
[6] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[7] | Zexuan MA, Jin LI, Yanli LU, Chen CHEN. Network intrusion detection method based on WaveNet and BiGRU [J]. Systems Engineering and Electronics, 2022, 44(8): 2652-2660. |
[8] | Haoliang LI, Siwei CHEN, Xuesong WANG. Study on characterization of sea corner reflectors in polarimetric rotation domain [J]. Systems Engineering and Electronics, 2022, 44(7): 2065-2073. |
[9] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[10] | Xiaoling ZHOU, Zhaoxia ZHANG, Ya LU, Qian WANG, Kunkun WANG. SAR image recognition based on improved R-FCN [J]. Systems Engineering and Electronics, 2022, 44(4): 1202-1209. |
[11] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[12] | Chunzheng WANG, Minghua HU, Lei YANG, Zheng ZHAO. Review on air traffic delay prediction [J]. Systems Engineering and Electronics, 2022, 44(3): 863-874. |
[13] | Xinyu ZHANG, Yuan LIU, Jianing SONG. Short-term orbit prediction based on LSTM neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 939-947. |
[14] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
[15] | Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network [J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||