Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 465-471.doi: 10.12305/j.issn.1001-506X.2023.02.17
• Systems Engineering • Previous Articles
Xiaofeng LYU, Dongze YANG, Ling MA
Received:
2021-10-27
Online:
2023-01-13
Published:
2023-02-04
Contact:
Dongze YANG
CLC Number:
Xiaofeng LYU, Dongze YANG, Ling MA. Optimal design of modular ammunition scheduling scheme for carrier-based aircraft[J]. Systems Engineering and Electronics, 2023, 45(2): 465-471.
1 | 刘钧圣, 王刚, 王琨, 等. 考虑不确定性的模块化战术导弹优化设计[J]. 兵工学报, 2020, 41 (2): 270- 279. |
LIU J S , WANG G , WANG K , et al. Optimization design of modular tactical missile under uncertainty[J]. Acta Armamentarii, 2020, 41 (2): 270- 279. | |
2 |
唐奕, 王建博, 王燕. 国外模块化制导航空炸弹发展概述[J]. 飞航导弹, 2018, 1, 38- 42.
doi: 10.16338/j.issn.1009-1319.2018.01.08 |
TANG Y , WANG J B , WANG Y . Development of modular navigation air bomb abroad[J]. Aerodynamic Missile Journal, 2018, 1, 38- 42.
doi: 10.16338/j.issn.1009-1319.2018.01.08 |
|
3 | 李超, 梅风华, 吕余海, 等. 国外海军机载武器装备技术发展研究[J]. 飞航导弹, 2019, (9): 36- 41. |
LI C , MEI F H , LYU Y H , et al. Research on the development of foreign naval airborne weapon equipment technology[J]. Aerodynamic Missile Journal, 2019, (9): 36- 41. | |
4 | 张琳, 韩晓明, 李彦彬. 模块化、系列化防空导弹应用与发展研究[J]. 飞航导弹, 2014, (10): 29- 33. |
ZHANG L , HAN X M , LI Y B . Research on application and development of modular and serial air defense missiles[J]. Aerodynamic Missile Journal, 2014, (10): 29- 33. | |
5 |
刘相春, 卢晶, 黄祥钊. 国外航母舰载机出动回收能力指标体系分析[J]. 中国舰船研究, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001 |
LIU X C , LU J , HUANG X Z . Analysis on the index system of sortie generation capacity of embarked aircrafts[J]. Chinese Journal of Ship Research, 2011, 6 (4): 1- 7.
doi: 10.3969/j.issn.1673-3185.2011.04.001 |
|
6 | 马登武, 郭小威, 邓力. 基于改进蚁群算法的舰载机弹药调度[J]. 系统仿真学报, 2012, 24 (6): 1207- 1211. |
MA D W , GUO X W , DENG L . Ammunition scheduling of carrier-based aircraft based on modified ant colony algorithm[J]. Journal of System Simulation, 2012, 24 (6): 1207- 1211. | |
7 |
张洪亮, 刘建伟, 马羚, 等. 基于离散粒子群的舰载机弹药调度[J]. 舰船电子工程, 2021, 41 (4): 146- 149.
doi: 10.3969/j.issn.1672-9730.2021.04.032 |
ZHANG H L , LIU J W , MA L , et al. Ammunition scheduling of carrier based aircraft based on discrete particle swarm optimization[J]. Ship Electronic Engineering, 2021, 41 (4): 146- 149.
doi: 10.3969/j.issn.1672-9730.2021.04.032 |
|
8 | XIE J , GAO L , PENG K K , et al. Review on flexible job shop scheduling[J]. IET Collaborative Intelligent Manufacturing, 2019, 1 (3): 67- 77. |
9 | WANG C , TIAN N , JI Z C , et al. Multi-objective fuzzy flexible job shop scheduling using memetic algorithm[J]. Journal of Statistical Computation and Simulation, 2017, 87 (14): 2828- 2846. |
10 | XU L H , HUANG B S , CAO Y C . Research on multi-distribution center vehicle routing optimization method based on improved multi-layer coding genetic algorithm[J]. Open Journal of Transportation Technologies, 2019, 8 (3): 222- 232. |
11 | YIN L J , LI X Y , GAO L , et al. A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem[J]. Sustainable Computing: Informatics and Systems, 2017, 13, 15- 30. |
12 | CHOU C W , CHIEN C F , GEN M . A multiobjective hybrid genetic algorithm for TFT-LCD module assembly scheduling[J]. IEEE Trans.on Automation Science and Engineering, 2014, 11 (3): 692- 705. |
13 | NING T , JIN H , SONG X D , et al. An improved quantum genetic algorithm based on MAGTD for dynamic FJSP[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 9 (4): 931- 940. |
14 | LIN W H , DENG Q W , HAN W W , et al. An effective algorithm for flexible assembly job-shop scheduling with tight job constraints[J]. International Transactions in Operational Research, 2020, 29 (1): 496- 525. |
15 | SHEN X N , HAN Y , FU J Z . Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems[J]. Soft Computing, 2017, 21, 6531- 6554. |
16 | WEI F F , CAO C Y , ZHANG H P . An improved genetic algorithm for resource-constrained flexible job-shop scheduling[J]. International Journal of Simulation Modeling, 2021, 20 (1): 201- 211. |
17 | KATO E R R , DE AGUIAR ARANHA G D , TSUNAKI R H . A new approach to solve the flexible job shop problem based on a hybrid particle swarm optimization and random-restart hill climbing[J]. Computers & Industrial Engineering, 2018, 125, 178- 189. |
18 | DING H J , GU X S . Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem[J]. Computers & Operations Research, 2020, 121 (9): 104951. |
19 | SINGH M R , SINGH M , MAHAPATRA S S , et al. Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85 (9): 2353- 2366. |
20 | HA C H . Evolving ant colony system for large-sized integrated process planning and scheduling problem considering sequence-dependent setup times[J]. Flexible Services and Manufacturing Journal, 2020, 32 (3): 523- 560. |
21 | WANG L , CAI J C , LI M , et al. Flexible job shop scheduling problem using an improved ant colony optimization[J]. Scientific Programming, 2017, 2017, 9016303. |
22 | LIOUANE N , SAAD I , HAMMADI S , et al. Ant systems and local search optimization for flexible job shop scheduling production[J]. International Journal of Computers, Communications & Control, 2007, 2 (2): 174- 184. |
23 | MOSLEHI G , MAHNAM M . A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search[J]. International Journal of Production Economics, 2011, 39 (8): 14- 22. |
24 | ZHANG Y F , WANG K , LIU Y , et al. Evolutionary game based real-time scheduling for energy-efficient distributed and flexible job shop[J]. Journal of Cleaner Production, 2021, 293, 126093. |
25 | WANG J , YANG J H , ZHANG Y F , et al. Infinitely repeated game based real-time scheduling for low-carbon flexible job shop considering multi-time periods[J]. Journal of Cleaner Production, 2020, 247, 119093. |
26 | LIU Z F , WANG J L , ZHANG C X , et al. A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem[J]. Computers & Operations Research, 2021, 135, 105431. |
27 | JIA S , HU Z H . Path-relinking Tabu search for the multi-objective flexible job shop scheduling problem[J]. Computers and Operations Research, 2014, 47 (7): 11- 26. |
28 | LI X Y , GAO L . An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics, 2016, 174, 93- 110. |
29 | 范加利, 孟杨凯, 黄葵, 等. 基于禁忌算法的舰载机甲板作业动态调度优化算法[EB/OL]. [2021-10-09]. http://kns.cnki.net/kcms/detail/11.2422.TN.20210928.0854.014.html. |
FAN J L, MENG Y K, HUANG K, et al. Aircraft deck ope-rations dynamic scheduling optimization algorithm based on the tabu algorithm[EB/OL]. [2021-10-09]. http://kns.cnki.net/kcms/detail/11.2422.TN.20210928.0854.014.html. | |
30 | TEYMOURIFAR A , OZTURK G , OZTURK Z K , et al. Extracting new dispatching rules for multi-objective dynamic flexible job shop scheduling with limited buffer spaces[J]. Cognitive Computation, 2020, 12 (1): 195- 205. |
31 | CHEN R H , YANG B , LI S , et al. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2020, 149, 106778. |
32 | 杨长胜, 周圣林. 美军航母武器保障系统概况及设计特点分析[J]. 飞航导弹, 2016, (11): 65- 69. |
YANG C S , ZHOU S L . General situation and design characteristics of American aircraft carrier weapon support system[J]. Aerodynamic Missile Journal, 2016, (11): 65- 69. |
[1] | Haojun FENG, Li DUAN, Biying ZHANG, Haichao LIU. Bidirectional cyclic evolutionary framework of entity linking and knowledge reasoning [J]. Systems Engineering and Electronics, 2022, 44(9): 2878-2885. |
[2] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[3] | Wanru HU, Zhugang WANG, Ruru MEI, Xuan CHEN. Research and implementation of high-speed and low-complexity reconfigurable L&R algorithm [J]. Systems Engineering and Electronics, 2022, 44(5): 1685-1693. |
[4] | Jiachen LIU, Lei DONG, Changxiao ZHAO, Hongbing CHEN. Simulation and verification of DIMA dynamic reconfiguration based on formal method [J]. Systems Engineering and Electronics, 2022, 44(4): 1282-1290. |
[5] | Zhipeng WU, Ping ZHANG, Zhen LI, Lei HUANG, Chang LIU, Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3667-3675. |
[6] | Peng WANG, Jiachen LIU, Lei DOND, Changxiao ZHAO. Task oriented DIMA dynamic reconfiguration strategy for civil aircraft [J]. Systems Engineering and Electronics, 2021, 43(6): 1618-1627. |
[7] | Zehai GAO, Cunbao MA, Haotian NIU. Performance degradation Lévy model of integrated modular avionics [J]. Systems Engineering and Electronics, 2021, 43(4): 1144-1152. |
[8] | ZHOU Dong-qing, WANG Xing, CHENG Si-yi, CHEN You. Community detection algorithm via discrete PSO [J]. Systems Engineering and Electronics, 2016, 38(2): 428-433. |
[9] | LV Xun-hong, JIANG Bin, CHEN Xin, QI Rui-yun. Research on architecture of fault tolerant flight control computer for UAVs [J]. Systems Engineering and Electronics, 2016, 38(11): 2586-2597. |
[10] | HONG Feng, HAN Rong-gui, HU Xiao, ZHANG Zhi-min, WANG Yu. Efficient hardware architecture for miniature SAR on-board#br# imaging processing system [J]. Systems Engineering and Electronics, 2014, 36(4): 672-678. |
[11] | JIANG Jun,FAN Wei-hua,GUO Jian,CHEN Qing-wei. Wavelet filtering algorithm for gyro signals in moving satellite communication system [J]. Journal of Systems Engineering and Electronics, 2010, 32(4): 825-828. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||